Do you want to publish a course? Click here

Traveling wave solutions of nonlinear partial differential equations

122   0   0.0 ( 0 )
 Added by Dionisio Bazeia
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

We propose a simple algebraic method for generating classes of traveling wave solutions for a variety of partial differential equations of current interest in nonlinear science. This procedure applies equally well to equations which may or may not be integrable. We illustrate the method with two distinct classes of models, one with solutions including compactons in a class of models inspired by the Rosenau-Hyman, Rosenau-Pikovsky and Rosenau-Hyman-Staley equations, and the other with solutions including peakons in a system which generalizes the Camassa-Holm, Degasperis-Procesi and Dullin-Gotwald-Holm equations. In both cases, we obtain new classes of solutions not studied before.



rate research

Read More

In this article, exact traveling wave solutions of a Wick-type stochastic nonlinear Schr{o}dinger equation and of a Wick-type stochastic fractional Regularized Long Wave-Burgers (RLW-Burgers) equation have been obtained by using an improved computational method. Specifically, the Hermite transform is employed for transforming Wick-type stochastic nonlinear partial differential equations into deterministic nonlinear partial differential equations with integral and fraction order. Furthermore, the required set of stochastic solutions in the white noise space is obtained by using the inverse Hermite transform. Based on the derived solutions, the dynamics of the considered equations are performed with some particular values of the physical parameters. The results reveal that the proposed improved computational technique can be applied to solve various kinds of Wick-type stochastic fractional partial differential equations.
We study localized solutions for the nonlinear graph wave equation on finite arbitrary networks. Assuming a large amplitude localized initial condition on one node of the graph, we approximate its evolution by the Duffing equation. The rest of the network satisfies a linear system forced by the excited node. This approximation is validated by reducing the nonlinear graph wave equation to the discrete nonlinear Schrodinger equation and by Fourier analysis. Finally, we examine numerically the condition for localization in the parameter plane, coupling versus amplitude and show that the localization amplitude depends on the maximal normal eigenfrequency.
Taking the example of Koretweg--de Vries equation, it is shown that soliton solutions need not always be the consequence of the trade-off between the nonlinear terms and the dispersive term in the nonlinear differential equation. Even the ordinary one dimensional linear partial differential equation can produce a soliton.
We survey the theory of attractors of nonlinear Hamiltonian partial differential equations since its appearance in 1990. These are results on global attraction to stationary states, to solitons and to stationary orbits, on adiabatic effective dynamics of solitons and their asymptotic stability. Results of numerical simulation are given. The obtained results allow us to formulate a new general conjecture on attractors of $G$ -invariant nonlinear Hamiltonian partial differential equations. This conjecture suggests a novel dynamical interpretation of basic quantum phenomena: Bohrs transitions between quantum stationary states, wave-particle duality and probabilistic interpretation.
84 - Hiroya Nakao , Igor Mezic 2020
We provide an overview of the Koopman operator analysis for a class of partial differential equations describing relaxation of the field variable to a stable stationary state. We introduce Koopman eigenfunctionals of the system and use the notion of conjugacy to develop spectral expansion of the Koopman operator. For linear systems such as the diffusion equation, the Koopman eigenfunctionals can be expressed as linear functionals of the field variable. The notion of inertial manifolds is shown to correspond to joint zero level sets of Koopman eigenfunctionals, and the notion of isostables is defined as the level sets of the slowest decaying Koopman eigenfunctional. Linear diffusion equation, nonlinear Burgers equation, and nonlinear phase-diffusion equation are analyzed as examples.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا