We report magnetism in carbon doped ZnO. Our first-principles calculations based on density functional theory predicted that carbon substitution for oxygen in ZnO results in a magnetic moment of 1.78 $mu_B$ per carbon. The theoretical prediction was confirmed experimentally. C-doped ZnO films deposited by pulsed laser deposition with various carbon concentrations showed ferromagnetism with Curie temperatures higher than 400 K, and the measured magnetic moment based on the content of carbide in the films ($1.5 - 3.0 mu_B$ per carbon) is in agreement with the theoretical prediction. The magnetism is due to bonding coupling between Zn ions and doped C atoms. Results of magneto-resistance and abnormal Hall effect show that the doped films are $n$-type semiconductors with intrinsic ferromagnetism. The carbon doped ZnO could be a promising room temperature dilute magnetic semiconductor (DMS) and our work demonstrates possiblity of produing DMS with non-metal doping.
Dilute magnetic semiconductors, achieved through substitutional doping of spin-polarized transition metals into semiconducting systems, enable experimental modulation of spin dynamics in ways that hold great promise for novel magneto-electric or magneto-optical devices, especially for two-dimensional systems such as transition metal dichalcogenides that accentuate interactions and activate valley degrees of freedom. Practical applications of 2D magnetism will likely require room-temperature operation, air stability, and (for magnetic semiconductors) the ability to achieve optimal doping levels without dopant aggregation. Here we describe room-temperature ferromagnetic order obtained in semiconducting vanadium-doped tungsten disulfide monolayers produced by a reliable single-step film sulfidation method across an exceptionally wide range of vanadium concentrations, up to 12 at% with minimal dopant aggregation. These monolayers develop p-type transport as a function of vanadium incorporation and rapidly reach ambipolarity. Ferromagnetism peaks at an intermediate vanadium concentration of a few atomic percent and decreases for higher concentrations, which is consistent with quenching due to orbital hybridization at closer vanadium-vanadium spacings, as supported by transmission electron microscopy, magnetometry and first-principles calculations. Room-temperature two-dimensional dilute magnetic semiconductors provide a new component to expand the functional scope of van der Waals heterostructures and bring semiconducting magnetic 2D heterostructures them into the realm of practical application.
Unexpected ferromagnetism has been observed in carbon doped ZnO films grown by pulsed laser deposition [Phys. Rev. Lett. 99, 127201 (2007)]. In this letter, we introduce carbon into ZnO films by ion implantation. Room temperature ferromagnetism has been observed. Our analysis demonstrates that (1) C-doped ferromagnetic ZnO can be achieved by an alternative method, i.e. ion implantation, and (2) the chemical involvement of carbon in the ferromagnetism is indirectly proven.
Alternating layers of granular Iron (Fe) and Titanium dioxide (TiO$_{2-delta}$) were deposited on (100) Lanthanum aluminate (LaAlO$_3$) substrates in low oxygen chamber pressure using a controlled pulsed laser ablation deposition technique. The total thickness of the film was about 200 nm. The films show ferromagnetic behavior for temperatures ranging from 4 to $400 ^oK$. The layered film structure was characterized as p-type magnetic semiconductor at $300 ^oK$ with a carrier density of the order of $10^{20} /cm^3$. The undoped pure TiO$_{2-delta}$ film was characterized as an n-type magnetic semiconductor. The hole carriers were excited at the interface between the granular Fe and TiO$_{2-delta}$ layers similar to holes excited in the metal/n-type semiconductor interface commonly observed in Metal-Oxide-Semiconductor (MOS) devices. The holes at the interface were polarized in an applied magnetic field raising the possibility that these granular MOS structures can be utilized for practical spintronic device applications.
The nature of the often reported room temperature ferromagnetism in transition metal doped oxides is still a matter of huge debate. Herein we report on room temperature ferromagnetism in high quality Co-doped ZnO (Zn1-xCoxO) bulk samples synthesized via standard solid-state reaction route. Reference paramagnetic Co-doped ZnO samples with low level of structural defects are subjected to heat treatments in a reductive atmosphere in order to introduce defects in the samples in a controlled way. A detailed structural analysis is carried out in order to characterize the induced defects and their concentration. The magnetometry revealed the coexistence of a paramagnetic and a ferromagnetic phase at room temperature in straight correlation with the structural properties. The saturation magnetization is found to increase with the intensification of the heat treatment, and, therefore, with the increase of the density of induced defects. The magnetic behavior is fully explained in terms of the bound magnetic polaron model. Based on the experimental findings, supported by theoretical calculations, we attribute the origin of the observed defect-induced-ferromagnetism to the ferromagnetic coupling between the Co ions mediated by magnetic polarons due to zinc interstitial defects.
We present in this paper the changes in the room temperature magnetic property of ZnO on Mn doping prepared using solvo-thermal process. The zero field cooled (ZFC) and field cooled (FC) magnetisation of undoped ZnO showed bifurcation and magnetic hysteresis at room temperature. Upon Mn doping the magnetic hysteresis at room temperature and the bifurcation in ZFC-FC magnetization vanishes. The results seem to indicate that undoped ZnO is ferromagnetic while on the other hand the Mn doped ZnO is not a ferromagnetic system. We observe that on addition of Mn atoms the system shows antiferromagnetism with very giant magnetic moments.