No Arabic abstract
Unexpected ferromagnetism has been observed in carbon doped ZnO films grown by pulsed laser deposition [Phys. Rev. Lett. 99, 127201 (2007)]. In this letter, we introduce carbon into ZnO films by ion implantation. Room temperature ferromagnetism has been observed. Our analysis demonstrates that (1) C-doped ferromagnetic ZnO can be achieved by an alternative method, i.e. ion implantation, and (2) the chemical involvement of carbon in the ferromagnetism is indirectly proven.
We have studied the structural, magnetic and electronic properties of Co-implanted ZnO (0001) films grown on Al2O3 (1120) substrates for different implantation doses and over a wide temperature range. Strong room temperature ferromagnetism is observed with magnetic parameters depending on the cobalt implantation dose. A detailed analysis of the structural and magnetic properties indicates that there are two magnetic phases in Co-implanted ZnO films. One is a ferromagnetic phase due to the formation of long range ferromagnetic ordering between implanted magnetic cobalt ions in the ZnO layer, the second one is a superparamagnetic phase, which occurs due to the formation of metallic cobalt clusters in the Al2O3 substrate. Using x-ray resonant magnetic scattering, the element specific magnetization of cobalt, oxygen and Zn was investigated. Magnetic dichroism was observed at the Co L2,3 edges as well as at the O K edge. In addition, the anomalous Hall effect is also observed, supporting the intrinsic nature of ferromagnetism in Co-implanted ZnO films.
The nature of the often reported room temperature ferromagnetism in transition metal doped oxides is still a matter of huge debate. Herein we report on room temperature ferromagnetism in high quality Co-doped ZnO (Zn1-xCoxO) bulk samples synthesized via standard solid-state reaction route. Reference paramagnetic Co-doped ZnO samples with low level of structural defects are subjected to heat treatments in a reductive atmosphere in order to introduce defects in the samples in a controlled way. A detailed structural analysis is carried out in order to characterize the induced defects and their concentration. The magnetometry revealed the coexistence of a paramagnetic and a ferromagnetic phase at room temperature in straight correlation with the structural properties. The saturation magnetization is found to increase with the intensification of the heat treatment, and, therefore, with the increase of the density of induced defects. The magnetic behavior is fully explained in terms of the bound magnetic polaron model. Based on the experimental findings, supported by theoretical calculations, we attribute the origin of the observed defect-induced-ferromagnetism to the ferromagnetic coupling between the Co ions mediated by magnetic polarons due to zinc interstitial defects.
We report on structural, magnetic and electronic properties of Co-implanted TiO2 rutile single crystals for different implantation doses. Strong ferromagnetism at room temperature and above is observed in TiO2 rutile plates after cobalt ion implantation, with magnetic parameters depending on the cobalt implantation dose. While the structural data indicate the presence of metallic cobalt clusters, the multiplet structure of the Co L3 edge in the XAS spectra gives clear evidence for a substitutional Co 2+ state. The detailed analysis of the structural and magnetic properties indicates that there are two magnetic phases in Co-implanted TiO2 plates. One is a ferromagnetic phase due to the formation of long range ferromagnetic ordering between implanted magnetic cobalt ions in the rutile phase, and the second one is a superparamagnetic phase originates from the formation of metallic cobalt clusters in the implanted region. Using x-ray resonant magnetic scattering, the element specific magnetization of cobalt, oxygen and titanium in Co-implanted TiO2 single crystals are investigated. Magnetic dichroism was observed at the Co L edges as well as at the O K edge. The interaction mechanism, which leads to ferromagnetic ordering of substituted cobalt ions in the host matrix, is also discussed.
We report magnetism in carbon doped ZnO. Our first-principles calculations based on density functional theory predicted that carbon substitution for oxygen in ZnO results in a magnetic moment of 1.78 $mu_B$ per carbon. The theoretical prediction was confirmed experimentally. C-doped ZnO films deposited by pulsed laser deposition with various carbon concentrations showed ferromagnetism with Curie temperatures higher than 400 K, and the measured magnetic moment based on the content of carbide in the films ($1.5 - 3.0 mu_B$ per carbon) is in agreement with the theoretical prediction. The magnetism is due to bonding coupling between Zn ions and doped C atoms. Results of magneto-resistance and abnormal Hall effect show that the doped films are $n$-type semiconductors with intrinsic ferromagnetism. The carbon doped ZnO could be a promising room temperature dilute magnetic semiconductor (DMS) and our work demonstrates possiblity of produing DMS with non-metal doping.
We prove a spontaneous magnetization of the oxygen-terminated ZnO (0001) surface by utilizing a multi-code, SIESTA and KKR, first-principles approach, involving both LSDA+U and selfinteraction corrections (SIC) to treat electron correlation effects. Critical temperatures are estimated from Monte Carlo simulations, showing that at and above 300 K the surface is thermodynamically stable and ferromagnetic. The observed half-metallicity and long-range magnetic order originate from the presence of p-holes in the valence band of the oxide. The mechanism is universal in ionic oxides and points to a new route for the design of ferromagnetic low dimensional systems.