Do you want to publish a course? Click here

Monolayer Vanadium-doped Tungsten Disulfide: A Room-Temperature Dilute Magnetic Semiconductor

116   0   0.0 ( 0 )
 Added by Manh-Huong Phan
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Dilute magnetic semiconductors, achieved through substitutional doping of spin-polarized transition metals into semiconducting systems, enable experimental modulation of spin dynamics in ways that hold great promise for novel magneto-electric or magneto-optical devices, especially for two-dimensional systems such as transition metal dichalcogenides that accentuate interactions and activate valley degrees of freedom. Practical applications of 2D magnetism will likely require room-temperature operation, air stability, and (for magnetic semiconductors) the ability to achieve optimal doping levels without dopant aggregation. Here we describe room-temperature ferromagnetic order obtained in semiconducting vanadium-doped tungsten disulfide monolayers produced by a reliable single-step film sulfidation method across an exceptionally wide range of vanadium concentrations, up to 12 at% with minimal dopant aggregation. These monolayers develop p-type transport as a function of vanadium incorporation and rapidly reach ambipolarity. Ferromagnetism peaks at an intermediate vanadium concentration of a few atomic percent and decreases for higher concentrations, which is consistent with quenching due to orbital hybridization at closer vanadium-vanadium spacings, as supported by transmission electron microscopy, magnetometry and first-principles calculations. Room-temperature two-dimensional dilute magnetic semiconductors provide a new component to expand the functional scope of van der Waals heterostructures and bring semiconducting magnetic 2D heterostructures them into the realm of practical application.



rate research

Read More

78 - H. Pan , J. B. Yi , J. Y. Lin 2006
We report magnetism in carbon doped ZnO. Our first-principles calculations based on density functional theory predicted that carbon substitution for oxygen in ZnO results in a magnetic moment of 1.78 $mu_B$ per carbon. The theoretical prediction was confirmed experimentally. C-doped ZnO films deposited by pulsed laser deposition with various carbon concentrations showed ferromagnetism with Curie temperatures higher than 400 K, and the measured magnetic moment based on the content of carbide in the films ($1.5 - 3.0 mu_B$ per carbon) is in agreement with the theoretical prediction. The magnetism is due to bonding coupling between Zn ions and doped C atoms. Results of magneto-resistance and abnormal Hall effect show that the doped films are $n$-type semiconductors with intrinsic ferromagnetism. The carbon doped ZnO could be a promising room temperature dilute magnetic semiconductor (DMS) and our work demonstrates possiblity of produing DMS with non-metal doping.
Diluted magnetic semiconductors including Mn-doped GaAs are attractive for gate-controlled spintronics but Curie transition at room temperature with long-range ferromagnetic order is still debatable to date. Here, we report the room-temperature ferromagnetic domains with long-range order in semiconducting V-doped WSe2 monolayer synthesized by chemical vapor deposition. Ferromagnetic order is manifested using magnetic force microscopy up to 360K, while retaining high on/off current ratio of ~105 at 0.1% V-doping concentration. The V-substitution to W sites keep a V-V separation distance of 5 nm without V-V aggregation, scrutinized by high-resolution scanning transmission-electron microscopy, which implies the possibility of the Ruderman-Kittel-Kasuya-Yoshida interaction (or Zener model) by establishing the long-range ferromagnetic order in V-doped WSe2 monolayer through free hole carriers. More importantly, the ferromagnetic order is clearly modulated by applying a back gate. Our findings open new opportunities for using two-dimensional transition metal dichalcogenides for future spintronics.
Atomically thin transition metal dichalcogenide (TMD) semiconductors hold enormous potential for modern optoelectronic devices and quantum computing applications. By inducing long-range ferromagnetism (FM) in these semiconductors through the introduction of small amounts of a magnetic dopant, it is possible to extend their potential in emerging spintronic applications. Here, we demonstrate light-mediated, room temperature (RT) FM, in V-doped WS2 (V-WS2) monolayers. We probe this effect using the principle of magnetic LC resonance, which employs a soft ferromagnetic Co-based microwire coil driven near its resonance in the radio frequency (RF) regime. The combination of LC resonance with an extraordinary giant magneto-impedance effect, renders the coil highly sensitive to changes in the magnetic flux through its core. We then place the V-WS2 monolayer at the core of the coil where it is excited with a laser while its change in magnetic permeability is measured. Notably, the magnetic permeability of the monolayer is found to depend on the laser intensity, thus confirming light control of RT magnetism in this two-dimensional (2D) material. Guided by density functional calculations, we attribute this phenomenon to the presence of excess holes in the conduction and valence bands, as well as carriers trapped in the magnetic doping states, which in turn mediates the magnetization of the V-WS2 monolayer. These findings provide a unique route to exploit light-controlled ferromagnetism in low powered 2D spintronic devices capable of operating at RT.
Doping is an effective way to modify the electronic property of two-dimensional (2D) materials and endow them with new functionalities. However, wide-range control of the substitutional doping concentration with large scale uniformity remains challenging in 2D materials. Here we report in-situ chemical vapor deposition growth of vanadium (V) doped monolayer molybdenum disulfide (MoS2) with widely tunable doping concentrations ranging from 0.3 to 13.1 at%. The key to regulate the doping concentration lies in the use of appropriate V precursors with different doping abilities, which also generate a large-scale uniform doping effect. Artificial synaptic transistors were fabricated by using the heavily doped MoS2 as the channel material for the first time. Synaptic potentiation, depression and repetitive learning processes are mimicked by the gate-tunable channel conductance change in such transistors with abundant V atoms to trap/detrap electrons. This work shows a feasible method to dope monolayer 2D semiconductors and demonstrates their use in artificial synaptic transistors.
The outstanding optoelectronic and valleytronic properties of transition metal dichalcogenides (TMDs) have triggered intense research efforts by the scientific community. An alternative to induce long-range ferromagnetism (FM) in TMDs is by introducing magnetic dopants to form a dilute magnetic semiconductor. Enhancing ferromagnetism in these semiconductors not only represents a key step towards modern TMD-based spintronics, but also enables exploration of new and exciting dimensionality-driven magnetic phenomena. To this end, we show tunable ferromagnetism at room temperature and a thermally induced spin flip (TISF) in monolayers of V-doped WSe2. As vanadium concentrations increase within the WSe2 monolayers the saturation magnetization increases, and it is optimal at ~4at.% vanadium; the highest doping/alloying level ever achieved for V-doped WSe2 monolayers. The TISF occurs at ~175 K and becomes more pronounced upon increasing the temperature towards room temperature. We demonstrate that TISF can be manipulated by changing the vanadium concentration within the WSe2 monolayers. We attribute TISF to the magnetic field and temperature dependent flipping of the nearest W-site magnetic moments that are antiferromagnetically coupled to the V magnetic moments in the ground state. This is fully supported by a recent spin-polarized density functional theory calculation. Our findings pave the way for the development of novel spintronic and valleytronic nanodevices based on atomically thin magnetic semiconductors and stimulate further studies in this rapidly expanding research field of 2D magnetism.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا