No Arabic abstract
Time-resolved Kerr rotation spectroscopy is used to monitor the room temperature electron spin dynamics of optical telecommunication wavelength AlInGaAs multiple quantum wells lattice-matched to InP. We found that electron spin coherence times and effective g-factors vary as a function of aluminum concentration. The measured electron spin coherence times of these multiple quantum wells, with wavelengths ranging from 1.26 microns to 1.53 microns, reach approximately 100 ps at room temperature, and the measured electron effective g-factors are in the range from -2.3 to -1.1.
We designed and performed low temperature DC transport characterization studies on two-dimensional electron gases confined in lattice-matched In$_{0.53}$Ga$_{0.47}$As/In$_{0.52}$Al$_{0.48}$As quantum wells grown by molecular beam epitaxy on InP substrates. The nearly constant mobility for samples with the setback distance larger than 50nm and the similarity between the quantum and transport life-time suggest that the main scattering mechanism is due to short range scattering, such as alloy scattering, with a scattering rate of 2.2 ps$^{-1}$. We also obtain the Fermi level at the In$_{0.53}$Ga$_{0.47}$As/In$_{0.52}$Al$_{0.48}$As surface to be 0.36eV above the conduction band, when fitting our experimental densities with a Poisson-Schrodinger model.
We present a microscopic theory for transport of the spin polarized charge density wave with both electrons and holes in the $(111)$ GaAs quantum wells. We analytically show that, contradicting to the commonly accepted belief, the spin and charge motions are bound together only in the fully polarized system but can be separated in the case of low spin polarization or short spin lifetime even when the spatial profiles of spin density wave and charge density wave overlap with each other. We further show that, the Coulomb drag between electrons and holes can markedly enhance the hole spin diffusion if the hole spin motion can be separated from the charge motion. In the high spin polarized system, the Coulomb drag can boost the hole spin diffusion coefficient by more than one order of magnitude.
In inversion-asymmetric semiconductors, spin-orbit coupling induces a k-dependent spin splitting of valence and conduction bands, which is a well-known cause for spin decoherence in bulk and heterostructures. Manipulating nonequilibrium spin coherence in device applications thus requires understanding how valence and conduction band spin splitting affects carrier spin dynamics. This paper studies the relevance of this decoherence mechanism for collective intersubband spin-density excitations (SDEs) in quantum wells. A density-functional formalism for the linear spin-density matrix response is presented that describes SDEs in the conduction band of quantum wells with subbands that may be non-parabolic and spin-split due to bulk or structural inversion asymmetry (Rashba effect). As an example, we consider a 40 nm GaAs/AlGaAs quantum well, including Rashba spin splitting of the conduction subbands. We find a coupling and wavevector-dependent splitting of the longitudinal and transverse SDEs. However, decoherence of the SDEs is not determined by subband spin splitting, due to collective effects arising from dynamical exchange and correlation.
We study the depolarization of optically oriented electrons in quantum wells subjected to an in-plane magnetic field and show that the Hanle curve drastically depends on the carrier mobility. In low-mobility structures, the Hanle curve is described by a Lorentzian with the width determined by the effective g-factor and the spin lifetime. In contrast, the magnetic field dependence of spin polarization in high-mobility quantum wells is nonmonotonic: The spin polarization rises with the magnetic field induction at small fields, reaches maximum and then decreases. We show that the position of the Hanle curve maximum can be used to directly measure the spin-orbit Rashba/Dresselhaus magnetic field.
Inverse spin Hall effect (ISHE) allows the conversion of pure spin current into charge current in nonmagnetic materials (NM) due to spin-orbit interaction (SOI). In ferromagnetic materials (FM), SOI is known to contribute to anomalous Hall effect (AHE), anisotropic magnetoresistance (AMR), and other spin-dependent transport phenomena. However, SOI in FM has been ignored in ISHE studies in spintronic devices, and the possibility of self-induced ISHE in FM has never been explored until now. In this paper, we demonstrate the experimental verification of ISHE in FM. We found that the spin-pumping-induced spin current in permalloy (Py) film generates a transverse electromotive force (EMF) in the film itself, which results from the coupling of spin current and SOI in Py. The control experiments ruled out spin rectification effect and anomalous Nernst effect as the origin of the EMF.