Do you want to publish a course? Click here

Intersubband spin-density excitations in quantum wells with Rashba spin splitting

92   0   0.0 ( 0 )
 Added by Carsten A. Ullrich
 Publication date 2002
  fields Physics
and research's language is English




Ask ChatGPT about the research

In inversion-asymmetric semiconductors, spin-orbit coupling induces a k-dependent spin splitting of valence and conduction bands, which is a well-known cause for spin decoherence in bulk and heterostructures. Manipulating nonequilibrium spin coherence in device applications thus requires understanding how valence and conduction band spin splitting affects carrier spin dynamics. This paper studies the relevance of this decoherence mechanism for collective intersubband spin-density excitations (SDEs) in quantum wells. A density-functional formalism for the linear spin-density matrix response is presented that describes SDEs in the conduction band of quantum wells with subbands that may be non-parabolic and spin-split due to bulk or structural inversion asymmetry (Rashba effect). As an example, we consider a 40 nm GaAs/AlGaAs quantum well, including Rashba spin splitting of the conduction subbands. We find a coupling and wavevector-dependent splitting of the longitudinal and transverse SDEs. However, decoherence of the SDEs is not determined by subband spin splitting, due to collective effects arising from dynamical exchange and correlation.



rate research

Read More

In semiconductor heterostructures, bulk and structural inversion asymmetry and spin-orbit coupling induce a k-dependent spin splitting of valence and conduction subbands, which can be viewed as being caused by momentum-dependent crystal magnetic fields. This paper studies the influence of these effective magnetic fields on the intersubband spin dynamics in an asymmetric n-type GaAs/AlGaAs quantum well. We calculate the dispersions of intersubband spin plasmons using linear response theory. The so-called Dyakonov-Perel decoherence mechanism is inactive for collective intersubband excitations, i.e., crystal magnetic fields do not lead to decoherence of spin plasmons. Instead, we predict that the main signature of bulk and structural inversion asymmetry in intersubband spin dynamics is a three-fold, anisotropic splitting of the spin plasmon dispersion. The importance of many-body effects is pointed out, and conditions for experimental observation with inelastic light scattering are discussed.
552 - M. Q. Weng , M. W. Wu 2013
We present a microscopic theory for transport of the spin polarized charge density wave with both electrons and holes in the $(111)$ GaAs quantum wells. We analytically show that, contradicting to the commonly accepted belief, the spin and charge motions are bound together only in the fully polarized system but can be separated in the case of low spin polarization or short spin lifetime even when the spatial profiles of spin density wave and charge density wave overlap with each other. We further show that, the Coulomb drag between electrons and holes can markedly enhance the hole spin diffusion if the hole spin motion can be separated from the charge motion. In the high spin polarized system, the Coulomb drag can boost the hole spin diffusion coefficient by more than one order of magnitude.
The science and applications of electronics and optoelectronics have been driven for decades by progress in growth of semiconducting heterostructures. Many applications in the infrared and terahertz frequency range exploit transitions between quantized states in semiconductor quantum wells (intersubband transitions). However, current quantum well devices are limited in functionality and versatility by diffusive interfaces and the requirement of lattice-matched growth conditions. Here, we introduce the concept of intersubband transitions in van der Waals quantum wells and report their first experimental observation. Van der Waals quantum wells are naturally formed by two-dimensional (2D) materials and hold unexplored potential to overcome the aforementioned limitations: They form atomically sharp interfaces and can easily be combined into heterostructures without lattice-matching restrictions. We employ near-field local probing to spectrally resolve and electrostatically control the intersubband absorption with unprecedented nanometer-scale spatial resolution. This work enables exploiting intersubband transitions with unmatched design freedom and individual electronic and optical control suitable for photodetectors, LEDs and lasers.
We report on beating appearance in Shubnikov-de Haas oscillations in conduction band of 18-22nm HgTe quantum wells under applied top-gate voltage. Analysis of the beatings reveals two electron concentrations at the Fermi level arising due to Rashba-like spin splitting of the first conduction subband H1. The difference dN_s in two concentrations as a function of the gate voltage is qualitatively explained by a proposed toy electrostatic model involving the surface states localized at quantum well interfaces. Experimental values of dN_s are also in a good quantitative agreement with self-consistent calculations of Poisson and Schrodinger equations with eight-band kp Hamiltonian. Our results clearly demonstrate that the large spin splitting of the first conduction subband is caused by surface nature of $H1$ states hybridized with the heavy-hole band.
203 - Oleg Chalaev , G. Vignale 2010
In the absence of an external field, the Rashba spin-orbit interaction (SOI) in a two-dimensional electron gas in a semiconductor quantum well arises entirely from the screened electrostatic potential of ionized donors. We adjust the wave functions of a quantum well so that electrons occupying the first (lowest) subband conserve their spin projection along the growth axis (Sz), while the electrons occupying the second subband precess due to Rashba SOI. Such a specially designed quantum well may be used as a spin relaxation trigger: electrons conserve Sz when the applied voltage (or current) is lower than a certain threshold V*; higher voltage switches on the Dyakonov-Perel spin relaxation.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا