No Arabic abstract
Text detection in natural scene images for content analysis is an interesting task. The research community has seen some great developments for English/Mandarin text detection. However, Urdu text extraction in natural scene images is a task not well addressed. In this work, firstly, a new dataset is introduced for Urdu text in natural scene images. The dataset comprises of 500 standalone images acquired from real scenes. Secondly, the channel enhanced Maximally Stable Extremal Region (MSER) method is applied to extract Urdu text regions as candidates in an image. Two-stage filtering mechanism is applied to eliminate non-candidate regions. In the first stage, text and noise are classified based on their geometric properties. In the second stage, a support vector machine classifier is trained to discard non-text candidate regions. After this, text candidate regions are linked using centroid-based vertical and horizontal distances. Text lines are further analyzed by a different classifier based on HOG features to remove non-text regions. Extensive experimentation is performed on the locally developed dataset to evaluate the performance. The experimental results show good performance on test set images. The dataset will be made available for research use. To the best of our knowledge, the work is the first of its kind for the Urdu language and would provide a good dataset for free research use and serve as a baseline performance on the task of Urdu text extraction.
Recent learning-based approaches show promising performance improvement for scene text removal task. However, these methods usually leave some remnants of text and obtain visually unpleasant results. In this work, we propose a novel end-to-end framework based on accurate text stroke detection. Specifically, we decouple the text removal problem into text stroke detection and stroke removal. We design a text stroke detection network and a text removal generation network to solve these two sub-problems separately. Then, we combine these two networks as a processing unit, and cascade this unit to obtain the final model for text removal. Experimental results demonstrate that the proposed method significantly outperforms the state-of-the-art approaches for locating and erasing scene text. Since current publicly available datasets are all synthetic and cannot properly measure the performance of different methods, we therefore construct a new real-world dataset, which will be released to facilitate the relevant research.
Scene text detection, which is one of the most popular topics in both academia and industry, can achieve remarkable performance with sufficient training data. However, the annotation costs of scene text detection are huge with traditional labeling methods due to the various shapes of texts. Thus, it is practical and insightful to study simpler labeling methods without harming the detection performance. In this paper, we propose to annotate the texts by scribble lines instead of polygons for text detection. It is a general labeling method for texts with various shapes and requires low labeling costs. Furthermore, a weakly-supervised scene text detection framework is proposed to use the scribble lines for text detection. The experiments on several benchmarks show that the proposed method bridges the performance gap between the weakly labeling method and the original polygon-based labeling methods, with even better performance. We will release the weak annotations of the benchmarks in our experiments and hope it will benefit the field of scene text detection to achieve better performance with simpler annotations.
In this work, we propose a novel hybrid method for scene text detection namely Correlation Propagation Network (CPN). It is an end-to-end trainable framework engined by advanced Convolutional Neural Networks. Our CPN predicts text objects according to both top-down observations and the bottom-up cues. Multiple candidate boxes are assembled by a spatial communication mechanism call Correlation Propagation (CP). The extracted spatial features by CNN are regarded as node features in a latticed graph and Correlation Propagation algorithm runs distributively on each node to update the hypothesis of corresponding object centers. The CP process can flexibly handle scale-varying and rotated text objects without using predefined bounding box templates. Benefit from its distributive nature, CPN is computationally efficient and enjoys a high level of parallelism. Moreover, we introduce deformable convolution to the backbone network to enhance the adaptability to long texts. The evaluation on public benchmarks shows that the proposed method achieves state-of-art performance, and it significantly outperforms the existing methods for handling multi-scale and multi-oriented text objects with much lower computation cost.
In this paper, we propose a novel scene text detection method named TextMountain. The key idea of TextMountain is making full use of border-center information. Different from previous works that treat center-border as a binary classification problem, we predict text center-border probability (TCBP) and text center-direction (TCD). The TCBP is just like a mountain whose top is text center and foot is text border. The mountaintop can separate text instances which cannot be easily achieved using semantic segmentation map and its rising direction can plan a road to top for each pixel on mountain foot at the group stage. The TCD helps TCBP learning better. Our label rules will not lead to the ambiguous problem with the transformation of angle, so the proposed method is robust to multi-oriented text and can also handle well with curved text. In inference stage, each pixel at the mountain foot needs to search the path to the mountaintop and this process can be efficiently completed in parallel, yielding the efficiency of our method compared with others. The experiments on MLT, ICDAR2015, RCTW-17 and SCUT-CTW1500 databases demonstrate that the proposed method achieves better or comparable performance in terms of both accuracy and efficiency. It is worth mentioning our method achieves an F-measure of 76.85% on MLT which outperforms the previous methods by a large margin. Code will be made available.
Large geometry (e.g., orientation) variances are the key challenges in the scene text detection. In this work, we first conduct experiments to investigate the capacity of networks for learning geometry variances on detecting scene texts, and find that networks can handle only limited text geometry variances. Then, we put forward a novel Geometry Normalization Module (GNM) with multiple branches, each of which is composed of one Scale Normalization Unit and one Orientation Normalization Unit, to normalize each text instance to one desired canonical geometry range through at least one branch. The GNM is general and readily plugged into existing convolutional neural network based text detectors to construct end-to-end Geometry Normalization Networks (GNNets). Moreover, we propose a geometry-aware training scheme to effectively train the GNNets by sampling and augmenting text instances from a uniform geometry variance distribution. Finally, experiments on popular benchmarks of ICDAR 2015 and ICDAR 2017 MLT validate that our method outperforms all the state-of-the-art approaches remarkably by obtaining one-forward test F-scores of 88.52 and 74.54 respectively.