Do you want to publish a course? Click here

Scene text removal via cascaded text stroke detection and erasing

107   0   0.0 ( 0 )
 Added by Weize Quan
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Recent learning-based approaches show promising performance improvement for scene text removal task. However, these methods usually leave some remnants of text and obtain visually unpleasant results. In this work, we propose a novel end-to-end framework based on accurate text stroke detection. Specifically, we decouple the text removal problem into text stroke detection and stroke removal. We design a text stroke detection network and a text removal generation network to solve these two sub-problems separately. Then, we combine these two networks as a processing unit, and cascade this unit to obtain the final model for text removal. Experimental results demonstrate that the proposed method significantly outperforms the state-of-the-art approaches for locating and erasing scene text. Since current publicly available datasets are all synthetic and cannot properly measure the performance of different methods, we therefore construct a new real-world dataset, which will be released to facilitate the relevant research.



rate research

Read More

213 - Yixing Zhu , Jun Du 2018
In this paper, we propose a novel scene text detection method named TextMountain. The key idea of TextMountain is making full use of border-center information. Different from previous works that treat center-border as a binary classification problem, we predict text center-border probability (TCBP) and text center-direction (TCD). The TCBP is just like a mountain whose top is text center and foot is text border. The mountaintop can separate text instances which cannot be easily achieved using semantic segmentation map and its rising direction can plan a road to top for each pixel on mountain foot at the group stage. The TCD helps TCBP learning better. Our label rules will not lead to the ambiguous problem with the transformation of angle, so the proposed method is robust to multi-oriented text and can also handle well with curved text. In inference stage, each pixel at the mountain foot needs to search the path to the mountaintop and this process can be efficiently completed in parallel, yielding the efficiency of our method compared with others. The experiments on MLT, ICDAR2015, RCTW-17 and SCUT-CTW1500 databases demonstrate that the proposed method achieves better or comparable performance in terms of both accuracy and efficiency. It is worth mentioning our method achieves an F-measure of 76.85% on MLT which outperforms the previous methods by a large margin. Code will be made available.
198 - Cong Yao , Xiang Bai , Nong Sang 2016
Recently, scene text detection has become an active research topic in computer vision and document analysis, because of its great importance and significant challenge. However, vast majority of the existing methods detect text within local regions, typically through extracting character, word or line level candidates followed by candidate aggregation and false positive elimination, which potentially exclude the effect of wide-scope and long-range contextual cues in the scene. To take full advantage of the rich information available in the whole natural image, we propose to localize text in a holistic manner, by casting scene text detection as a semantic segmentation problem. The proposed algorithm directly runs on full images and produces global, pixel-wise prediction maps, in which detections are subsequently formed. To better make use of the properties of text, three types of information regarding text region, individual characters and their relationship are estimated, with a single Fully Convolutional Network (FCN) model. With such predictions of text properties, the proposed algorithm can simultaneously handle horizontal, multi-oriented and curved text in real-world natural images. The experiments on standard benchmarks, including ICDAR 2013, ICDAR 2015 and MSRA-TD500, demonstrate that the proposed algorithm substantially outperforms previous state-of-the-art approaches. Moreover, we report the first baseline result on the recently-released, large-scale dataset COCO-Text.
Scene text detection, which is one of the most popular topics in both academia and industry, can achieve remarkable performance with sufficient training data. However, the annotation costs of scene text detection are huge with traditional labeling methods due to the various shapes of texts. Thus, it is practical and insightful to study simpler labeling methods without harming the detection performance. In this paper, we propose to annotate the texts by scribble lines instead of polygons for text detection. It is a general labeling method for texts with various shapes and requires low labeling costs. Furthermore, a weakly-supervised scene text detection framework is proposed to use the scribble lines for text detection. The experiments on several benchmarks show that the proposed method bridges the performance gap between the weakly labeling method and the original polygon-based labeling methods, with even better performance. We will release the weak annotations of the benchmarks in our experiments and hope it will benefit the field of scene text detection to achieve better performance with simpler annotations.
With only bounding-box annotations in the spatial domain, existing video scene text detection (VSTD) benchmarks lack temporal relation of text instances among video frames, which hinders the development of video text-related applications. In this paper, we systematically introduce a new large-scale benchmark, named as STVText4, a well-designed spatial-temporal detection metric (STDM), and a novel clustering-based baseline method, referred to as Temporal Clustering (TC). STVText4 opens a challenging yet promising direction of VSTD, termed as ST-VSTD, which targets at simultaneously detecting video scene texts in both spatial and temporal domains. STVText4 contains more than 1.4 million text instances from 161,347 video frames of 106 videos, where each instance is annotated with not only spatial bounding box and temporal range but also four intrinsic attributes, including legibility, density, scale, and lifecycle, to facilitate the community. With continuous propagation of identical texts in the video sequence, TC can accurately output the spatial quadrilateral and temporal range of the texts, which sets a strong baseline for ST-VSTD. Experiments demonstrate the efficacy of our method and the great academic and practical value of the STVText4. The dataset and code will be available soon.
Scene text removal (STR) contains two processes: text localization and background reconstruction. Through integrating both processes into a single network, previous methods provide an implicit erasure guidance by modifying all pixels in the entire image. However, there exists two problems: 1) the implicit erasure guidance causes the excessive erasure to non-text areas; 2) the one-stage erasure lacks the exhaustive removal of text region. In this paper, we propose a ProgrEssively Region-based scene Text eraser (PERT), introducing an explicit erasure guidance and performing balanced multi-stage erasure for accurate and exhaustive text removal. Firstly, we introduce a new region-based modification strategy (RegionMS) to explicitly guide the erasure process. Different from previous implicitly guided methods, RegionMS performs targeted and regional erasure on only text region, and adaptively perceives stroke-level information to improve the integrity of non-text areas with only bounding box level annotations. Secondly, PERT performs balanced multi-stage erasure with several progressive erasing stages. Each erasing stage takes an equal step toward the text-erased image to ensure the exhaustive erasure of text regions. Compared with previous methods, PERT outperforms them by a large margin without the need of adversarial loss, obtaining SOTA results with high speed (71 FPS) and at least 25% lower parameter complexity. Code is available at https://github.com/wangyuxin87/PERT.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا