No Arabic abstract
Recent applications of the Full Duplex (FD) technology focus on enabling simultaneous control communication and data transmission to reduce the control information exchange overhead, which impacts end-to-end latency and spectral efficiency. In this paper, we present a simultaneous direction estimation and data transmission scheme for millimeter Wave (mmWave) massive Multiple-Input Multiple-Output (MIMO) systems, enabled by a recent FD MIMO technology with reduced hardware complexity Self-Interference (SI) cancellation. We apply the proposed framework in the mmWave analog beam management problem, considering a base station equipped with a large transmit antenna array realizing downlink analog beamforming and few digitally controlled receive antenna elements used for uplink Direction-of-Arrival (DoA) estimation. A joint optimization framework for designing the DoA-assisted analog beamformer and the analog as well as digital SI cancellation is presented with the objective to maximize the achievable downlink rate. Our simulation results showcase that the proposed scheme outperforms its conventional half-duplex counterpart, yielding reduced DoA estimation error and superior downlink data rate.
The densely packed antennas of millimeter-Wave (mmWave) MIMO systems are often blocked by the rain, snow, dust and even by fingers, which will change the channels characteristics and degrades the systems performance. In order to solve this problem, we propose a cross-entropy inspired antenna array diagnosis detection (CE-AAD) technique by exploiting the correlations of adjacent antennas, when blockages occur at the transmitter. Then, we extend the proposed CE-AAD algorithm to the case, where blockages occur at transmitter and receiver simultaneously. Our simulation results show that the proposed CE-AAD algorithm outperforms its traditional counterparts.
Millimeter wave (mmWave) communication has attracted increasing attention as a promising technology for 5G networks. One of the key architectural features of mmWave is the use of massive antenna arrays at both the transmitter and the receiver sides. Therefore, by employing directional beamforming (BF), both mmWave base stations (MBSs) and mmWave users (MUEs) are capable of supporting multi-beam simultaneous transmissions. However, most researches have only considered a single beam, which means that they do not make full potential of mmWave. In this context, in order to improve the performance of short-range indoor mmWave networks with multiple reflections, we investigate the challenges and potential solutions of downlink multi-user multi-beam transmission, which can be described as a high-dimensional (i.e., beamspace) multi-user multiple-input multiple-output (MU-MIMO) technique, including multi-user BF training, simultaneous users grouping, and multi-user multibeam power allocation. Furthermore, we present the theoretical and numerical results to demonstrate that beamspace MU-MIMO compared with single beam transmission can largely improve the rate performance of mmWave systems.
Hybrid analog and digital BeamForming (HBF) is one of the enabling transceiver technologies for millimeter Wave (mmWave) Multiple Input Multiple Output (MIMO) systems. This technology offers highly directional communication, which is able to confront the intrinsic characteristics of mmWave signal propagation. However, the small coherence time in mmWave systems, especially under mobility conditions, renders efficient Beam Management (BM) in standalone mmWave communication a very difficult task. In this paper, we consider HBF transceivers with planar antenna panels and design a multi-level beam codebook for the analog beamformer comprising flat top beams with variable widths. These beams exhibit an almost constant array gain for the whole desired angle width, thereby facilitating efficient hierarchical BM. Focusing on the uplink communication, we present a novel beam training algorithm with dynamic beam ordering, which is suitable for the stringent latency requirements of the latest mmWave standard discussions. Our simulation results showcase the latency performance improvement and received signal-to-noise ratio with different variations of the proposed scheme over the optimum beam training scheme based on exhaustive narrow beam search.
We address the problem of analyzing and classifying in groups the downlink channel environment in a millimeter-wavelength cell, accounting for path loss, multipath fading, and User Equipment (UE) blocking, by employing a hybrid propagation and multipath fading model, thus using accurate inter-group interference modeling. The base station (BS) employs a large Uniform Planar Array (UPA) to facilitate massive Multiple-Input, Multiple-Output (MIMO) communications with high efficiency. UEs are equipped with a single antenna and are distributed uniformly within the cell. The key problem is analyzing and defining groups toward precoding. Because equitable type of throughput is desired between groups, Combined Frequency and Spatial Division and Multiplexing (CFSDM) prevails as necessary. We show that by employing three subcarrier frequencies, the UEs can be efficiently separated into high throughput groups, with each group employing Virtual Channel Model Beams (VCMB) based inner precoding, followed by efficient Multi-User Multiple-Input Multiple-Output (MU-MIMO) outer precoders. For each group, we study three different sub-grouping methods offering different advantages. We show that the improvement offered by Zero-Forcing Per-Group Precoding (ZF-PGP) over Zero-Forcing Precoding (ZFP) is very high.
In a practical massive MIMO (multiple-input multiple-output) system, the number of antennas at a base station (BS) is constrained by the space and cost factors, which limits the throughput gain promised by theoretical analysis. This paper thus studies the feasibility of adopting the intelligent reflecting surface (IRS) to further improve the beamforming gain of the uplink communications in a massive MIMO system. Under such a novel system, the central question lies in whether the IRS is able to enhance the network throughput as expected, if the channel estimation overhead is taken into account. In this paper, we first show that the favorable propagation property for the conventional massive MIMO system without IRS, i.e., the channels of arbitrary two users are orthogonal, no longer holds for the IRS-assisted massive MIMO system, due to its special channel property that each IRS element reflects the signals from all the users to the BS via the same channel. As a result, the maximal-ratio combining (MRC) receive beamforming strategy leads to strong inter-user interference and thus even lower user rates than those of the massive MIMO system without IRS. To tackle this challenge, we propose a novel strategy for zero-forcing (ZF) beamforming design at the BS and reflection coefficients design at the IRS to efficiently null the inter-user interference. Under our proposed strategy, it is rigorously shown that even if the channel estimation overhead is considered, the IRS-assisted massive MIMO system can always achieve higher throughput compared to its counterpart without IRS, despite the fact that the favorable propagation property no longer holds.