No Arabic abstract
The densely packed antennas of millimeter-Wave (mmWave) MIMO systems are often blocked by the rain, snow, dust and even by fingers, which will change the channels characteristics and degrades the systems performance. In order to solve this problem, we propose a cross-entropy inspired antenna array diagnosis detection (CE-AAD) technique by exploiting the correlations of adjacent antennas, when blockages occur at the transmitter. Then, we extend the proposed CE-AAD algorithm to the case, where blockages occur at transmitter and receiver simultaneously. Our simulation results show that the proposed CE-AAD algorithm outperforms its traditional counterparts.
Millimeter-wave massive MIMO with lens antenna array can considerably reduce the number of required radio-frequency (RF) chains by beam selection. However, beam selection requires the base station to acquire the accurate information of beamspace channel. This is a challenging task, as the size of beamspace channel is large while the number of RF chains is limited. In this paper, we investigate the beamspace channel estimation problem in mmWave massive MIMO systems with lens antenna array. Specifically, we first design an adaptive selecting network for mmWave massive MIMO systems with lens antenna array, and based on this network, we further formulate the beamspace channel estimation problem as a sparse signal recovery problem. Then, by fully utilizing the structural characteristics of mmWave beamspace channel, we propose a support detection (SD)-based channel estimation scheme with reliable performance and low pilot overhead. Finally, the performance and complexity analyses are provided to prove that the proposed SD-based channel estimation scheme can estimate the support of sparse beamspace channel with comparable or higher accuracy than conventional schemes. Simulation results verify that the proposed SD-based channel estimation scheme outperforms conventional schemes and enjoys satisfying accuracy, even in the low SNR region as the structural characteristics of beamspace channel can be exploited.
Recent applications of the Full Duplex (FD) technology focus on enabling simultaneous control communication and data transmission to reduce the control information exchange overhead, which impacts end-to-end latency and spectral efficiency. In this paper, we present a simultaneous direction estimation and data transmission scheme for millimeter Wave (mmWave) massive Multiple-Input Multiple-Output (MIMO) systems, enabled by a recent FD MIMO technology with reduced hardware complexity Self-Interference (SI) cancellation. We apply the proposed framework in the mmWave analog beam management problem, considering a base station equipped with a large transmit antenna array realizing downlink analog beamforming and few digitally controlled receive antenna elements used for uplink Direction-of-Arrival (DoA) estimation. A joint optimization framework for designing the DoA-assisted analog beamformer and the analog as well as digital SI cancellation is presented with the objective to maximize the achievable downlink rate. Our simulation results showcase that the proposed scheme outperforms its conventional half-duplex counterpart, yielding reduced DoA estimation error and superior downlink data rate.
Millimeter wave (mmWave) communication by utilizing lens antenna arrays is a promising technique for realizing cost-effective 5G wireless systems with large MIMO (multiple-input multiple-output) but only limited radio frequency (RF) chains. This paper studies an uplink multi-user mmWave single-sided lens MIMO system, where only the base station (BS) is equipped with a full-dimensional (FD) lens antenna array with both elevation and azimuth angle resolution capabilities, and each mobile station (MS) employs the conventional uniform planar array (UPA) without the lens. By exploiting the angle-dependent energy focusing property of the lens antenna array at the BS as well as the multi-path sparsity of mmWave channels, we propose a low-complexity path division multiple access (PDMA) scheme, which enables virtually interference-free multi-user communications when the angle of arrivals (AoAs) of all MS multi-path signals are sufficiently separable at the BS. To this end, a new technique called path delay compensation is proposed at the BS to effectively transform the multi-user frequency-selective MIMO channels to parallel frequency-flat small-size MIMO channels for different MSs, for each of which the low-complexity single-carrier(SC) transmission is applied. For general scenarios with insufficient AoA separations, analog beamforming at the MSs and digital combining at the BS are jointly designed to maximize the achievable sum-rate of the MSs based on their effective MIMO channels resulting from path delay compensation. In addition, we propose a new and efficient channel estimation scheme tailored for PDMA, which requires negligible training overhead in practical mmWave systems and yet leads to comparable performance as that based on perfect channel state information (CSI).
The recent concept of beamspace multiple input multiple output (MIMO) can significantly reduce the number of required radio-frequency (RF) chains in millimeter-wave (mmWave) massive MIMO systems without obvious performance loss. However, the fundamental limit of existing beamspace MIMO is that, the number of supported users cannot be larger than the number of RF chains at the same time-frequency resources. To break this fundamental limit, in this paper we propose a new spectrum and energy efficient mmWave transmission scheme that integrates the concept of non-orthogonal multiple access (NOMA) with beamspace MIMO, i.e., beamspace MIMO-NOMA. By using NOMA in beamspace MIMO systems, the number of supported users can be larger than the number of RF chains at the same time-frequency resources. Particularly, the achievable sum rate of the proposed beamspace MIMO-NOMA in a typical mmWave channel model is analyzed, which shows an obvious performance gain compared with the existing beamspace MIMO. Then, a precoding scheme based on the principle of zero-forcing (ZF) is designed to reduce the inter-beam interferences in the beamspace MIMO-NOMA system. Furthermore, to maximize the achievable sum rate, a dynamic power allocation is proposed by solving the joint power optimization problem, which not only includes the intra-beam power optimization, but also considers the inter-beam power optimization. Finally, an iterative optimization algorithm with low complexity is developed to realize the dynamic power allocation. Simulation results show that the proposed beamspace MIMO-NOMA can achieve higher spectrum and energy efficiency compared with existing beamspace MIMO.
Millimeter-wave (mmWave) communication systems rely on large-scale antenna arrays to combat large path-loss at mmWave band. Due to hardware characteristics and deployment environments, mmWave large-scale antenna systems are vulnerable to antenna element blockages and failures, which necessitate diagnostic techniques to locate faulty antenna elements for calibration purposes. Current diagnostic techniques require full or partial knowledge of channel state information (CSI), which can be challenging to acquire in the presence of antenna failures. In this letter, we propose a blind diagnostic technique to identify faulty antenna elements in mmWave large-scale antenna systems, which does not require any CSI knowledge. By jointly exploiting the sparsity of mmWave channel and failure pattern, we first formulate the diagnosis problem as a joint sparse recovery problem. Then, the atomic norm is introduced to induce the sparsity of mmWave channel over continuous Fourier dictionary. An efficient algorithm based on alternating direction method of multipliers (ADMM) is proposed to solve the formulated problem. Finally, the performance of the proposed technique is evaluated through numerical simulations.