Do you want to publish a course? Click here

Beam Management for Millimeter Wave Beamspace MU-MIMO Systems

108   0   0.0 ( 0 )
 Added by Qing Xue
 Publication date 2017
and research's language is English




Ask ChatGPT about the research

Millimeter wave (mmWave) communication has attracted increasing attention as a promising technology for 5G networks. One of the key architectural features of mmWave is the use of massive antenna arrays at both the transmitter and the receiver sides. Therefore, by employing directional beamforming (BF), both mmWave base stations (MBSs) and mmWave users (MUEs) are capable of supporting multi-beam simultaneous transmissions. However, most researches have only considered a single beam, which means that they do not make full potential of mmWave. In this context, in order to improve the performance of short-range indoor mmWave networks with multiple reflections, we investigate the challenges and potential solutions of downlink multi-user multi-beam transmission, which can be described as a high-dimensional (i.e., beamspace) multi-user multiple-input multiple-output (MU-MIMO) technique, including multi-user BF training, simultaneous users grouping, and multi-user multibeam power allocation. Furthermore, we present the theoretical and numerical results to demonstrate that beamspace MU-MIMO compared with single beam transmission can largely improve the rate performance of mmWave systems.



rate research

Read More

154 - Qing Xue , Xuming Fang , 2017
For future networks (i.e., the fifth generation (5G) wireless networks and beyond), millimeter-wave (mmWave) communication with large available unlicensed spectrum is a promising technology that enables gigabit multimedia applications. Thanks to the short wavelength of mmWave radio, massive antenna arrays can be packed into the limited dimensions of mmWave transceivers. Therefore, with directional beamforming (BF), both mmWave transmitters (MTXs) and mmWave receivers (MRXs) are capable of supporting multiple beams in 5G networks. However, for the transmission between an MTX and an MRX, most works have only considered a single beam, which means that they do not make full potential use of mmWave. Furthermore, the connectivity of single beam transmission can easily be blocked. In this context, we propose a single-user multi-beam concurrent transmission scheme for future mmWave networks with multiple reflected paths. Based on spatial spectrum reuse, the scheme can be described as a multiple-input multiple-output (MIMO) technique in beamspace (i.e., in the beam-number domain). Moreover, this study investigates the challenges and potential solutions for implementing this scheme, including multibeam selection, cooperative beam tracking, multi-beam power allocation and synchronization. The theoretical and numerical results show that the proposed beamspace SU-MIMO can largely improve the achievable rate of the transmission between an MTX and an MRX and, meanwhile, can maintain the connectivity.
92 - Wenyan Ma , Chenhao Qi 2019
In this paper, a framework of beamspace channel estimation in millimeter wave (mmWave) massive MIMO system is proposed. The framework includes the design of hybrid precoding and combining matrix as well as the search method for the largest entry of over-sampled beamspace receiving matrix. Then based on the framework, three channel estimation schemes including identity matrix approximation (IA)-based scheme, scattered zero off-diagonal (SZO)-based scheme and concentrated zero off-diagonal (CZO)-based scheme are proposed. These schemes together with the existing channel estimation schemes are compared in terms of computational complexity, estimation error and total time slots for channel training. Simulation results show that the proposed schemes outperform the existing schemes and can approach the performance of the ideal case. In particular, total time slots for channel training can be substantially reduced.
112 - Hengtao He , Rui Wang , Weijie Jin 2020
Millimeter-wave (mmWave) communications have been one of the promising technologies for future wireless networks that integrate a wide range of data-demanding applications. To compensate for the large channel attenuation in mmWave band and avoid high hardware cost, a lens-based beamspace massive multiple-input multiple-output (MIMO) system is considered. However, the beam squint effect in wideband mmWave systems makes channel estimation very challenging, especially when the receiver is equipped with a limited number of radio-frequency (RF) chains. Furthermore, the real channel data cannot be obtained before the mmWave system is used in a new environment, which makes it impossible to train a deep learning (DL)-based channel estimator using real data set beforehand. To solve the problem, we propose a model-driven unsupervised learning network, named learned denoising-based generalized expectation consistent (LDGEC) signal recovery network. By utilizing the Steins unbiased risk estimator loss, the LDGEC network can be trained only with limited measurements corresponding to the pilot symbols, instead of the real channel data. Even if designed for unsupervised learning, the LDGEC network can be supervisingly trained with the real channel via the denoiser-by-denoiser way. The numerical results demonstrate that the LDGEC-based channel estimator significantly outperforms state-of-the-art compressive sensing-based algorithms when the receiver is equipped with a small number of RF chains and low-resolution ADCs.
Recent applications of the Full Duplex (FD) technology focus on enabling simultaneous control communication and data transmission to reduce the control information exchange overhead, which impacts end-to-end latency and spectral efficiency. In this paper, we present a simultaneous direction estimation and data transmission scheme for millimeter Wave (mmWave) massive Multiple-Input Multiple-Output (MIMO) systems, enabled by a recent FD MIMO technology with reduced hardware complexity Self-Interference (SI) cancellation. We apply the proposed framework in the mmWave analog beam management problem, considering a base station equipped with a large transmit antenna array realizing downlink analog beamforming and few digitally controlled receive antenna elements used for uplink Direction-of-Arrival (DoA) estimation. A joint optimization framework for designing the DoA-assisted analog beamformer and the analog as well as digital SI cancellation is presented with the objective to maximize the achievable downlink rate. Our simulation results showcase that the proposed scheme outperforms its conventional half-duplex counterpart, yielding reduced DoA estimation error and superior downlink data rate.
Millimeter-wave (mmWave) multiple-input multiple-output (MIMO) system for the fifth generation (5G) cellular communications can also enable single-anchor positioning and object tracking due to its large bandwidth and inherently high angular resolution. In this paper, we introduce the newly invented concept, large intelligent surface (LIS), to mmWave positioning systems, study the theoretical performance bounds (i.e., Cramer-Rao lower bounds) for positioning, and evaluate the impact of the number of LIS elements and the value of phase shifters on the position estimation accuracy compared to the conventional scheme with one direct link and one non-line-of-sight path. It is verified that better performance can be achieved with a LIS from the theoretical analyses and numerical study.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا