No Arabic abstract
We apply the generalized conditional gradient algorithm to potential mean field games and we show its well-posedeness. It turns out that this method can be interpreted as a learning method called fictitious play. More precisely, each step of the generalized conditional gradient method amounts to compute the best-response of the representative agent, for a predicted value of the coupling terms of the game. We show that for the learning sequence $delta_k = 2/(k+2)$, the potential cost converges in $O(1/k)$, the exploitability and the variables of the problem (distribution, congestion, price, value function and control terms) converge in $O(1/sqrt{k})$, for specific norms.
We propose and investigate a general class of discrete time and finite state space mean field game (MFG) problems with potential structure. Our model incorporates interactions through a congestion term and a price variable. It also allows hard constraints on the distribution of the agents. We analyze the connection between the MFG problem and two optimal control problems in duality. We present two families of numerical methods and detail their implementation: (i) primal-dual proximal methods (and their extension with nonlinear proximity operators), (ii) the alternating direction method of multipliers (ADMM) and a variant called ADM-G. We give some convergence results. Numerical results are provided for two examples with hard constraints.
We study in this paper three aspects of Mean Field Games. The first one is the case when the dynamics of each player depend on the strategies of the other players. The second one concerns the modeling of noise in discrete space models and the formulation of the Master Equation in this case. Finally, we show how Mean Field Games reduce to agent based models when the intertemporal preference rate goes to infinity, i.e. when the anticipation of the players vanishes.
We study first order evolutive Mean Field Games where the Hamiltonian is non-coercive. This situation occurs, for instance, when some directions are forbidden to the generic player at some points. We establish the existence of a weak solution of the system via a vanishing viscosity method and, mainly, we prove that the evolution of the populations density is the push-forward of the initial density through the flow characterized almost everywhere by the optimal trajectories of the control problem underlying the Hamilton-Jacobi equation. As preliminary steps, we need that the optimal trajectories for the control problem are unique (at least for a.e. starting points) and that the optimal controls can be expressed in terms of the horizontal gradient of the value function.
In this note we prove the uniqueness of solutions to a class of Mean Field Games systems subject to possibly degenerate individual noise. Our results hold true for arbitrary long time horizons and for general non-separable Hamiltonians that satisfy a so-called $displacement monotonicity$ condition. Ours are the first global in time uniqueness results, beyond the well-known Lasry-Lions monotonicity condition, for the Mean Field Games systems involving non-separable Hamiltonians. The displacement monotonicity assumptions imposed on the data provide actually not only uniqueness, but also the existence and regularity of the solutions.
In this paper, we introduce a notion of generalized potential games that is inspired by a newly developed theory on generalized gradient flows. More precisely, a game is called generalized potential if the simultaneous gradient of the loss functions is a nonlinear function of the gradient of a potential function. Applications include a class of games arising from chemical reaction networks with detailed balance condition. For this class of games, we prove an explicit exponential convergence to equilibrium for evolution of a single reversible reaction. Moreover, numerical investigations are performed to calculate the equilibrium state of some reversible chemical reactions which give rise to generalized potential games.