Do you want to publish a course? Click here

Discrete potential mean field games

65   0   0.0 ( 0 )
 Added by Pierre Lavigne
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

We propose and investigate a general class of discrete time and finite state space mean field game (MFG) problems with potential structure. Our model incorporates interactions through a congestion term and a price variable. It also allows hard constraints on the distribution of the agents. We analyze the connection between the MFG problem and two optimal control problems in duality. We present two families of numerical methods and detail their implementation: (i) primal-dual proximal methods (and their extension with nonlinear proximity operators), (ii) the alternating direction method of multipliers (ADMM) and a variant called ADM-G. We give some convergence results. Numerical results are provided for two examples with hard constraints.



rate research

Read More

Mean field games are concerned with the limit of large-population stochastic differential games where the agents interact through their empirical distribution. In the classical setting, the number of players is large but fixed throughout the game. However, in various applications, such as population dynamics or economic growth, the number of players can vary across time which may lead to different Nash equilibria. For this reason, we introduce a branching mechanism in the population of agents and obtain a variation on the mean field game problem. As a first step, we study a simple model using a PDE approach to illustrate the main differences with the classical setting. We prove existence of a solution and show that it provides an approximate Nash-equilibrium for large population games. We also present a numerical example for a linear--quadratic model. Then we study the problem in a general setting by a probabilistic approach. It is based upon the relaxed formulation of stochastic control problems which allows us to obtain a general existence result.
We study the asymptotic organization among many optimizing individuals interacting in a suitable moderate way. We justify this limiting game by proving that its solution provides approximate Nash equilibria for large but finite player games. This proof depends upon the derivation of a law of large numbers for the empirical processes in the limit as the number of players tends to infinity. Because it is of independent interest, we prove this result in full detail. We characterize the solutions of the limiting game via a verification argument.
The theory of mean field games is a tool to understand noncooperative dynamic stochastic games with a large number of players. Much of the theory has evolved under conditions ensuring uniqueness of the mean field game Nash equilibrium. However, in some situations, typically involving symmetry breaking, non-uniqueness of solutions is an essential feature. To investigate the nature of non-unique solutions, this paper focuses on the technically simple setting where players have one of two states, with continuous time dynamics, and the game is symmetric in the players, and players are restricted to using Markov strategies. All the mean field game Nash equilibria are identified for a symmetric follow the crowd game. Such equilibria correspond to symmetric $epsilon$-Nash Markov equilibria for $N$ players with $epsilon$ converging to zero as $N$ goes to infinity. In contrast to the mean field game, there is a unique Nash equilibrium for finite $N.$ It is shown that fluid limits arising from the Nash equilibria for finite $N$ as $N$ goes to infinity are mean field game Nash equilibria, and evidence is given supporting the conjecture that such limits, among all mean field game Nash equilibria, are the ones that are stable fixed points of the mean field best response mapping.
We propose a mean field game model to study the question of how centralization of reward and computational power occur in the Bitcoin-like cryptocurrencies. Miners compete against each other for mining rewards by increasing their computational power. This leads to a novel mean field game of jump intensity control, which we solve explicitly for miners maximizing exponential utility, and handle numerically in the case of miners with power utilities. We show that the heterogeneity of their initial wealth distribution leads to greater imbalance of the reward distribution, or a rich get richer effect. This concentration phenomenon is aggravated by a higher bitcoin price, and reduced by competition. Additionally, an advanced miner with cost advantages such as access to cheaper electricity, contributes a significant amount of computational power in equilibrium. Hence, cost efficiency can also result in the type of centralization seen among miners of cryptocurrencies.
We study a general class of entropy-regularized multi-variate LQG mean field games (MFGs) in continuous time with $K$ distinct sub-population of agents. We extend the notion of actions to action distributions (exploratory actions), and explicitly derive the optimal action distributions for individual agents in the limiting MFG. We demonstrate that the optimal set of action distributions yields an $epsilon$-Nash equilibrium for the finite-population entropy-regularized MFG. Furthermore, we compare the resulting solutions with those of classical LQG MFGs and establish the equivalence of their existence.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا