No Arabic abstract
Dialogue Act (DA) classification is the task of classifying utterances with respect to the function they serve in a dialogue. Existing approaches to DA classification model utterances without incorporating the turn changes among speakers throughout the dialogue, therefore treating it no different than non-interactive written text. In this paper, we propose to integrate the turn changes in conversations among speakers when modeling DAs. Specifically, we learn conversation-invariant speaker turn embeddings to represent the speaker turns in a conversation; the learned speaker turn embeddings are then merged with the utterance embeddings for the downstream task of DA classification. With this simple yet effective mechanism, our model is able to capture the semantics from the dialogue content while accounting for different speaker turns in a conversation. Validation on three benchmark public datasets demonstrates superior performance of our model.
Topic drift is a common phenomenon in multi-turn dialogue. Therefore, an ideal dialogue generation models should be able to capture the topic information of each context, detect the relevant context, and produce appropriate responses accordingly. However, existing models usually use word or sentence level similarities to detect the relevant contexts, which fail to well capture the topical level relevance. In this paper, we propose a new model, named STAR-BTM, to tackle this problem. Firstly, the Biterm Topic Model is pre-trained on the whole training dataset. Then, the topic level attention weights are computed based on the topic representation of each context. Finally, the attention weights and the topic distribution are utilized in the decoding process to generate the corresponding responses. Experimental results on both Chinese customer services data and English Ubuntu dialogue data show that STAR-BTM significantly outperforms several state-of-the-art methods, in terms of both metric-based and human evaluations.
In this paper, we propose a novel auxiliary loss function for target-speaker automatic speech recognition (ASR). Our method automatically extracts and transcribes target speakers utterances from a monaural mixture of multiple speakers speech given a short sample of the target speaker. The proposed auxiliary loss function attempts to additionally maximize interference speaker ASR accuracy during training. This will regularize the network to achieve a better representation for speaker separation, thus achieving better accuracy on the target-speaker ASR. We evaluated our proposed method using two-speaker-mixed speech in various signal-to-interference-ratio conditions. We first built a strong target-speaker ASR baseline based on the state-of-the-art lattice-free maximum mutual information. This baseline achieved a word error rate (WER) of 18.06% on the test set while a normal ASR trained with clean data produced a completely corrupted result (WER of 84.71%). Then, our proposed loss further reduced the WER by 6.6% relative to this strong baseline, achieving a WER of 16.87%. In addition to the accuracy improvement, we also showed that the auxiliary output branch for the proposed loss can even be used for a secondary ASR for interference speakers speech.
Multi-party multi-turn dialogue comprehension brings unprecedented challenges on handling the complicated scenarios from multiple speakers and criss-crossed discourse relationship among speaker-aware utterances. Most existing methods deal with dialogue contexts as plain texts and pay insufficient attention to the crucial speaker-aware clues. In this work, we propose an enhanced speaker-aware model with masking attention and heterogeneous graph networks to comprehensively capture discourse clues from both sides of speaker property and speaker-aware relationships. With such comprehensive speaker-aware modeling, experimental results show that our speaker-aware model helps achieves state-of-the-art performance on the benchmark dataset Molweni. Case analysis shows that our model enhances the connections between utterances and their own speakers and captures the speaker-aware discourse relations, which are critical for dialogue modeling.
A multi-turn dialogue is composed of multiple utterances from two or more different speaker roles. Thus utterance- and speaker-aware clues are supposed to be well captured in models. However, in the existing retrieval-based multi-turn dialogue modeling, the pre-trained language models (PrLMs) as encoder represent the dialogues coarsely by taking the pairwise dialogue history and candidate response as a whole, the hierarchical information on either utterance interrelation or speaker roles coupled in such representations is not well addressed. In this work, we propose a novel model to fill such a gap by modeling the effective utterance-aware and speaker-aware representations entailed in a dialogue history. In detail, we decouple the contextualized word representations by masking mechanisms in Transformer-based PrLM, making each word only focus on the words in current utterance, other utterances, two speaker roles (i.e., utterances of sender and utterances of receiver), respectively. Experimental results show that our method boosts the strong ELECTRA baseline substantially in four public benchmark datasets, and achieves various new state-of-the-art performance over previous methods. A series of ablation studies are conducted to demonstrate the effectiveness of our method.
Conversational emotion recognition (CER) has attracted increasing interests in the natural language processing (NLP) community. Different from the vanilla emotion recognition, effective speaker-sensitive utterance representation is one major challenge for CER. In this paper, we exploit speaker identification (SI) as an auxiliary task to enhance the utterance representation in conversations. By this method, we can learn better speaker-aware contextual representations from the additional SI corpus. Experiments on two benchmark datasets demonstrate that the proposed architecture is highly effective for CER, obtaining new state-of-the-art results on two datasets.