Do you want to publish a course? Click here

Auxiliary Interference Speaker Loss for Target-Speaker Speech Recognition

106   0   0.0 ( 0 )
 Added by Naoyuki Kanda
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

In this paper, we propose a novel auxiliary loss function for target-speaker automatic speech recognition (ASR). Our method automatically extracts and transcribes target speakers utterances from a monaural mixture of multiple speakers speech given a short sample of the target speaker. The proposed auxiliary loss function attempts to additionally maximize interference speaker ASR accuracy during training. This will regularize the network to achieve a better representation for speaker separation, thus achieving better accuracy on the target-speaker ASR. We evaluated our proposed method using two-speaker-mixed speech in various signal-to-interference-ratio conditions. We first built a strong target-speaker ASR baseline based on the state-of-the-art lattice-free maximum mutual information. This baseline achieved a word error rate (WER) of 18.06% on the test set while a normal ASR trained with clean data produced a completely corrupted result (WER of 84.71%). Then, our proposed loss further reduced the WER by 6.6% relative to this strong baseline, achieving a WER of 16.87%. In addition to the accuracy improvement, we also showed that the auxiliary output branch for the proposed loss can even be used for a secondary ASR for interference speakers speech.



rate research

Read More

Conversational emotion recognition (CER) has attracted increasing interests in the natural language processing (NLP) community. Different from the vanilla emotion recognition, effective speaker-sensitive utterance representation is one major challenge for CER. In this paper, we exploit speaker identification (SI) as an auxiliary task to enhance the utterance representation in conversations. By this method, we can learn better speaker-aware contextual representations from the additional SI corpus. Experiments on two benchmark datasets demonstrate that the proposed architecture is highly effective for CER, obtaining new state-of-the-art results on two datasets.
Speech applications dealing with conversations require not only recognizing the spoken words, but also determining who spoke when. The task of assigning words to speakers is typically addressed by merging the outputs of two separate systems, namely, an automatic speech recognition (ASR) system and a speaker diarization (SD) system. The two systems are trained independently with different objective functions. Often the SD systems operate directly on the acoustics and are not constrained to respect word boundaries and this deficiency is overcome in an ad hoc manner. Motivated by recent advances in sequence to sequence learning, we propose a novel approach to tackle the two tasks by a joint ASR and SD system using a recurrent neural network transducer. Our approach utilizes both linguistic and acoustic cues to infer speaker roles, as opposed to typical SD systems, which only use acoustic cues. We evaluated the performance of our approach on a large corpus of medical conversations between physicians and patients. Compared to a competitive conventional baseline, our approach improves word-level diarization error rate from 15.8% to 2.2%.
In this paper, we propose VoiceID loss, a novel loss function for training a speech enhancement model to improve the robustness of speaker verification. In contrast to the commonly used loss functions for speech enhancement such as the L2 loss, the VoiceID loss is based on the feedback from a speaker verification model to generate a ratio mask. The generated ratio mask is multiplied pointwise with the original spectrogram to filter out unnecessary components for speaker verification. In the experiments, we observed that the enhancement network, after training with the VoiceID loss, is able to ignore a substantial amount of time-frequency bins, such as those dominated by noise, for verification. The resulting model consistently improves the speaker verification system on both clean and noisy conditions.
82 - Fengpeng Yue , Yan Deng , Lei He 2021
Machine Speech Chain, which integrates both end-to-end (E2E) automatic speech recognition (ASR) and text-to-speech (TTS) into one circle for joint training, has been proven to be effective in data augmentation by leveraging large amounts of unpaired data. In this paper, we explore the TTS->ASR pipeline in speech chain to do domain adaptation for both neural TTS and E2E ASR models, with only text data from target domain. We conduct experiments by adapting from audiobook domain (LibriSpeech) to presentation domain (TED-LIUM), there is a relative word error rate (WER) reduction of 10% for the E2E ASR model on the TED-LIUM test set, and a relative WER reduction of 51.5% in synthetic speech generated by neural TTS in the presentation domain. Further, we apply few-shot speaker adaptation for the E2E ASR by using a few utterances from target speakers in an unsupervised way, results in additional gains.
We present a novel source separation model to decompose asingle-channel speech signal into two speech segments belonging to two different speakers. The proposed model is a neural network based on residual blocks, and uses learnt speaker embeddings created from additional clean context recordings of the two speakers as input to assist in attributing the different time-frequency bins to the two speakers. In experiments, we show that the proposed model yields good performance in the source separation task, and outperforms the state-of-the-art baselines. Specifically, separating speech from the challenging VoxCeleb dataset, the proposed model yields 4.79dB signal-to-distortion ratio, 8.44dB signal-to-artifacts ratio and 7.11dB signal-to-interference ratio.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا