Do you want to publish a course? Click here

Large amplitude solutions in $L^p_vL^infty_TL^infty_x$ to the Boltzmann equation for soft potentials

67   0   0.0 ( 0 )
 Added by Zongguang Li
 Publication date 2021
  fields Physics
and research's language is English
 Authors Zongguang Li




Ask ChatGPT about the research

In this paper we consider the Cauchy problem on the angular cutoff Boltzmann equation near global Maxwillians for soft potentials either in the whole space or in the torus. We establish the existence of global unique mild solutions in the space $L^p_vL^{infty}_{T}L^{infty}_{x}$ with polynomial velocity weights for suitably large $pleq infty$, whenever for the initial perturbation the weighted $L^p_vL^{infty}_x$ norm can be arbitrarily large but the $L^1_xL^infty_v$ norm and the defect mass, energy and entropy are sufficiently small. The proof is based on the local in time existence as well as the uniform a priori estimates via an interplay in $L^p_vL^{infty}_{T}L^{infty}_{x}$ and $L^{infty}_{T}L^{infty}_{x}L^1_v$.



rate research

Read More

172 - Haoyu Zhang 2020
The Boltzmann equation without an angular cutoff in a three-dimensional periodic domain is considered. The global-in-time existence of solutions in a function space $ W_k^{zeta,p}L^infty_TL^2_v $ with $p>1$ and $zeta>3(1-frac{1}{p})$ is established in the perturbation framework and the long-time behavior of solutions is also obtained for both hard and soft potentials. The proof is based on several norm estimates.
78 - Renjun Duan , Shuangqian Liu , 2021
In the paper, we study the plane Couette flow of a rarefied gas between two parallel infinite plates at $y=pm L$ moving relative to each other with opposite velocities $(pm alpha L,0,0)$ along the $x$-direction. Assuming that the stationary state takes the specific form of $F(y,v_x-alpha y,v_y,v_z)$ with the $x$-component of the molecular velocity sheared linearly along the $y$-direction, such steady flow is governed by a boundary value problem on a steady nonlinear Boltzmann equation driven by an external shear force under the homogeneous non-moving diffuse reflection boundary condition. In case of the Maxwell molecule collisions, we establish the existence of spatially inhomogeneous non-equilibrium stationary solutions to the steady problem for any small enough shear rate $alpha>0$ via an elaborate perturbation approach using Caflischs decomposition together with Guos $L^inftycap L^2$ theory. The result indicates the polynomial tail at large velocities for the stationary distribution. Moreover, the large time asymptotic stability of the stationary solution with an exponential convergence is also obtained and as a consequence the nonnegativity of the steady profile is justified.
In the first part of this paper we establish a uniqueness result for continuity equations with velocity field whose derivative can be represented by a singular integral operator of an $L^1$ function, extending the Lagrangian theory in cite{BouchutCrippa13}. The proof is based on a combination of a stability estimate via optimal transport techniques developed in cite{Seis16a} and some tools from harmonic analysis introduced in cite{BouchutCrippa13}. In the second part of the paper, we address a question that arose in cite{FilhoMazzucatoNussenzveig06}, namely whether 2D Euler solutions obtained via vanishing viscosity are renormalized (in the sense of DiPerna and Lions) when the initial data has low integrability. We show that this is the case even when the initial vorticity is only in~$L^1$, extending the proof for the $L^p$ case in cite{CrippaSpirito15}.
For the generalized surface quasi-geostrophic equation $$left{ begin{aligned} & partial_t theta+ucdot abla theta=0, quad text{in } mathbb{R}^2 times (0,T), & u= abla^perp psi, quad psi = (-Delta)^{-s}theta quad text{in } mathbb{R}^2 times (0,T) , end{aligned} right. $$ $0<s<1$, we consider for $kge1$ the problem of finding a family of $k$-vortex solutions $theta_varepsilon(x,t)$ such that as $varepsilonto 0$ $$ theta_varepsilon(x,t) rightharpoonup sum_{j=1}^k m_jdelta(x-xi_j(t)) $$ for suitable trajectories for the vortices $x=xi_j(t)$. We find such solutions in the special cases of vortices travelling with constant speed along one axis or rotating with same speed around the origin. In those cases the problem is reduced to a fractional elliptic equation which is treated with singular perturbation methods. A key element in our construction is a proof of the non-degeneracy of the radial ground state for the so-called fractional plasma problem $$(-Delta)^sW = (W-1)^gamma_+, quad text{in } mathbb{R}^2, quad 1<gamma < frac{1+s}{1-s}$$ whose existence and uniqueness have recently been proven in cite{chan_uniqueness_2020}.
98 - William Borrelli 2020
In this paper we show the existence of infinitely many symmetric solutions for a cubic Dirac equation in two dimensions, which appears as effective model in systems related to honeycomb structures. Such equation is critical for the Sobolev embedding and solutions are found by variational methods. Moreover, we prove also prove smoothness and exponential decay at infinity.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا