Do you want to publish a course? Click here

Symmetric solutions for a 2D critical Dirac equation

99   0   0.0 ( 0 )
 Added by William Borrelli
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this paper we show the existence of infinitely many symmetric solutions for a cubic Dirac equation in two dimensions, which appears as effective model in systems related to honeycomb structures. Such equation is critical for the Sobolev embedding and solutions are found by variational methods. Moreover, we prove also prove smoothness and exponential decay at infinity.



rate research

Read More

We consider a nonlinear 4th-order degenerate parabolic partial differential equation that arises in modelling the dynamics of an incompressible thin liquid film on the outer surface of a rotating horizontal cylinder in the presence of gravity. The parameters involved determine a rich variety of qualitatively different flows. Depending on the initial data and the parameter values, we prove the existence of nonnegative periodic weak solutions. In addition, we prove that these solutions and their gradients cannot grow any faster than linearly in time; there cannot be a finite-time blow-up. Finally, we present numerical simulations of solutions.
260 - Loic Le Treust 2012
We prove, by a shooting method, the existence of infinitely many solutions of the form $psi(x^0,x) = e^{-iOmega x^0}chi(x)$ of the nonlinear Dirac equation {equation*} iunderset{mu=0}{overset{3}{sum}} gamma^mu partial_mu psi- mpsi - F(bar{psi}psi)psi = 0 {equation*} where $Omega>m>0,$ $chi$ is compactly supported and [F(x) = {{array}{ll} p|x|^{p-1} & text{if} |x|>0 0 & text{if} x=0 {array}.] with $pin(0,1),$ under some restrictions on the parameters $p$ and $Omega.$ We study also the behavior of the solutions as $p$ tends to zero to establish the link between these equations and the M.I.T. bag model ones.
We establish Strichartz estimates for the radial energy-critical wave equation in 5 dimensions in similarity coordinates. Using these, we prove the nonlinear asymptotic stability of the ODE blowup in the energy space.
We prove sharp pointwise decay estimates for critical Dirac equations on $mathbb{R}^n$ with $ngeq 2$. They appear for instance in the study of critical Dirac equations on compact spin manifolds, describing blow-up profiles, and as effective equations in honeycomb structures. For the latter case, we find excited states with an explicit asymptotic behavior. Moreover, we provide some classification results both for ground states and for excited states.
78 - Roland Donninger 2015
We establish Strichartz estimates in similarity coordinates for the radial wave equation in three spatial dimensions with a (time-dependent) self-similar potential. As an application we consider the critical wave equation and prove the asymptotic stability of the ODE blowup profile in the energy space.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا