Do you want to publish a course? Click here

Electric-Field-Controlled Antiferromagnetic Spintronic Devices

94   0   0.0 ( 0 )
 Added by Zhiqi Liu
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

In recent years, the field of antiferromagnetic spintronics has been substantially advanced. Electric-field control is a promising approach to achieving ultra-low power spintronic devices via suppressing Joule heating. In this article, cutting-edge research, including electric-field modulation of antiferromagnetic spintronic devices using strain, ionic liquids, dielectric materials, and electrochemical ionic migration, are comprehensively reviewed. Various emergent topics such as the Neel spin-orbit torque, chiral spintronics, topological antiferromagnetic spintronics, anisotropic magnetoresistance, memory devices, two-dimensional magnetism, and magneto-ionic modulation with respect to antiferromagnets are examined. In conclusion, we envision the possibility of realizing high-quality room-temperature antiferromagnetic tunnel junctions, antiferromagnetic spin logic devices, and artificial antiferromagnetic neurons. It is expected that this work provides an appropriate and forward-looking perspective that will promote the rapid development of this field.



rate research

Read More

Large magnetoresistance effect controlled by electric field rather than magnetic field or electric current is a preferable routine for designing low power consumption magnetoresistance-based spintronic devices. Here we propose an electric-field controlled antiferromagnetic (AFM) tunnel junction with structure of piezoelectric substrate/Mn3Pt/SrTiO3/Pt operating by the magnetic phase transition (MPT) of antiferromagnet Mn3Pt through its magneto-volume effect. The transport properties of the proposed AFM tunnel junction have been investigated by employing first-principles calculations. Our results show that a magnetoresistance over hundreds of percent is achievable when Mn3Pt undergoes MPT from a collinear AFM state to a non-collinear AFM state. Band structure analysis based on density functional calculations shows that the large TMR can be attributed to the joint effect of significant different Fermi surface of Mn3Pt at two AFM phases and the band symmetry filtering effect of the SrTiO3 tunnel barrier. In addition, other than single-crystalline tunnel barrier, we also discuss the robustness of the proposed magnetoresistance effect by considering amorphous AlOx barrier. Our results may open perspective way for effectively electrical writing and reading of the AFM state and its application in energy efficient magnetic memory devices.
We describe the directional growth of ferroelectric domains in a multiferroic BiFeO3 thin film, which was grown epitaxially on a vicinal (001) SrTiO3 substrate. A detailed structural analysis of the film shows that a strain gradient, which can create a symmetry breaking in a ferroelectric double well potential, causes ferroelectric domains to grow with preferred directionality under the influence of an electric field. Our results suggest the possibility of controlling the direction of domain growth with an electric field by imposing constraints on ferroelectric films, such as a strain gradient.
61 - Zhiqi Liu , Zexin Feng , Han Yan 2019
Antiferromagnets naturally exhibit three obvious advantages over ferromagnets for memory device applications: insensitivity to external magnetic fields, much faster spin dynamics (~THz) and higher packing density due to the absence of any stray field. Recently, antiferromagnetic spintronics emerges as a cutting-edge field in the magnetic community. The key mission of this rapidly rising field is to steer the spins or spin axes of antiferromagnets via external stimuli and then realize advanced devices based on their physical property changes. Herein, the state of the art of antiferromagnetic spintronics is presented. Subsequently, the history of ferromagnetic/ferroelectric multiferroic composites is briefly revisited. Finally, we introduce an ultralow-power, long-range, and magnetic-field-insensitive approach for harnessing antiferromagnetic spins based on our recent experimental progress, i.e., piezoelectric strain control. Relevant theoretical and experimental studies have formed an attractive new branch in antiferromagnetic spintronics, which we coin as antiferromagnetic piezospintronics.
The electrical control of the magnetization switching in ferromagnets is highly desired for future spintronic applications. Here we report on hybrid piezoelectric (PZT) /ferromagnetic (Co2FeAl) devices in which the planar Hall voltage in the ferromagnetic layer is tuned solely by piezo voltages. The change of planar Hall voltage is associated with magnetization switching through 90 in the plane under piezo voltages. Room temperature magnetic NOT and NOR gates are demonstrated based on the piezo voltage controlled Co2FeAl planar Hall effect devices without the external magnetic field. Our demonstration may lead to the realization of both information storage and processing using ferromagnetic materials.
396 - K. Katcko , E. Urbain , L. Kandpal 2019
Electrically manipulating the quantum properties of nano-objects, such as atoms or molecules, is typically done using scanning tunnelling microscopes and lateral junctions. The resulting nanotransport path is well established in these model devices. Societal applications require transposing this knowledge to nano-objects embedded within vertical solid-state junctions, which can advantageously harness spintronics to address these quantum properties thanks to ferromagnetic electrodes and high-quality interfaces. The challenge here is to ascertain the devices effective, buried nanotransport path, and to electrically involve these nano-objects in this path by shrinking the device area from the macro- to the nano-scale while maintaining high structural/chemical quality across the heterostructure. Weve developed a low-tech, resist- and solvent-free technological process that can craft nanopillar devices from entire in-situ grown heterostructures, and use it to study magnetotransport between two Fe and Co ferromagnetic electrodes across a functional magnetic CoPc molecular layer. We observe how spin-flip transport across CoPc molecular spin chains promotes a specific magnetoresistance effect, and alters the nanojunctions magnetism through spintronic anisotropy. In the process, we identify three magnetic units along the effective nanotransport path thanks to a macrospin model of magnetotransport. Our work elegantly connects the until now loosely associated concepts of spin-flip spectroscopy, magnetic exchange bias and magnetotransport due to molecular spin chains, within a solid-state device. We notably measure a 5.9meV energy threshold for magnetic decoupling between the Fe layers buried atoms and those in contact with the CoPc layer forming the so-called spinterface. This provides a first insight into the experimental energetics of this promising low-power information encoding unit.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا