No Arabic abstract
Electrically manipulating the quantum properties of nano-objects, such as atoms or molecules, is typically done using scanning tunnelling microscopes and lateral junctions. The resulting nanotransport path is well established in these model devices. Societal applications require transposing this knowledge to nano-objects embedded within vertical solid-state junctions, which can advantageously harness spintronics to address these quantum properties thanks to ferromagnetic electrodes and high-quality interfaces. The challenge here is to ascertain the devices effective, buried nanotransport path, and to electrically involve these nano-objects in this path by shrinking the device area from the macro- to the nano-scale while maintaining high structural/chemical quality across the heterostructure. Weve developed a low-tech, resist- and solvent-free technological process that can craft nanopillar devices from entire in-situ grown heterostructures, and use it to study magnetotransport between two Fe and Co ferromagnetic electrodes across a functional magnetic CoPc molecular layer. We observe how spin-flip transport across CoPc molecular spin chains promotes a specific magnetoresistance effect, and alters the nanojunctions magnetism through spintronic anisotropy. In the process, we identify three magnetic units along the effective nanotransport path thanks to a macrospin model of magnetotransport. Our work elegantly connects the until now loosely associated concepts of spin-flip spectroscopy, magnetic exchange bias and magnetotransport due to molecular spin chains, within a solid-state device. We notably measure a 5.9meV energy threshold for magnetic decoupling between the Fe layers buried atoms and those in contact with the CoPc layer forming the so-called spinterface. This provides a first insight into the experimental energetics of this promising low-power information encoding unit.
The molecular compound K$_6$[V$^{IV}_{15}$As$^{III}_6$O$_{42}$(H$_2$O)] $cdot$ 8H$_2$O, in short V$_{15}$, has shown important quantum effects such as coherent spin oscillations. The details of the spin quantum dynamics depend on the exact form of the spin Hamiltonian. In this study, we present a precise analysis of the intramolecular interactions in V$_{15}$. To that purpose, we performed high-field electron spin resonance measurements at 120 GHz and extracted the resonance fields as a function of crystal orientation and temperature. The data are compared against simulations using exact diagonalization to obtain the parameters of the molecular spin Hamiltonian.
Fractionalization is a phenomenon in which strong interactions in a quantum system drive the emergence of excitations with quantum numbers that are absent in the building blocks. Outstanding examples are excitations with charge e/3 in the fractional quantum Hall effect, solitons in one-dimensional conducting polymers and Majorana states in topological superconductors. Fractionalization is also predicted to manifest itself in low-dimensional quantum magnets, such as one-dimensional antiferromagnetic S = 1 chains. The fundamental features of this system are gapped excitations in the bulk and, remarkably, S = 1/2 edge states at the chain termini, leading to a four-fold degenerate ground state that reflects the underlying symmetry-protected topological order. Here, we use on-surface synthesis to fabricate one-dimensional spin chains that contain the S = 1 polycyclic aromatic hydrocarbon triangulene as the building block. Using scanning tunneling microscopy and spectroscopy at 4.5 K, we probe length-dependent magnetic excitations at the atomic scale in both open-ended and cyclic spin chains, and directly observe gapped spin excitations and fractional edge states therein. Exact diagonalization calculations provide conclusive evidence that the spin chains are described by the S = 1 bilinear-biquadratic Hamiltonian in the Haldane symmetry-protected topological phase. Our results open a bottom-up approach to study strongly correlated quantum spin liquid phases in purely organic materials, with the potential for the realization of measurement-based quantum computation.
Magnonics is seen nowadays as a candidate technology for energy-efficient data processing in classical and quantum systems. Pronounced nonlinearity, anisotropy of dispersion relations and phase degree of freedom of spin waves require advanced methodology for probing spin waves at room as well as at mK temperatures. Yet, the use of the established optical techniques like Brillouin light scattering (BLS) or magneto optical Kerr effect (MOKE) at ultra-low temperatures is forbiddingly complicated. By contrast, microwave spectroscopy can be used at all temperatures but is usually lacking spatial and wavenumber resolution. Here, we develop a variable-gap propagating spin-wave spectroscopy (VG-PSWS) method for the deduction of the dispersion relation of spin waves in wide frequency and wavenumber range. The method is based on the phase-resolved analysis of the spin-wave transmission between two antennas with variable spacing, in conjunction with theoretical data treatment. We validate the method for the in-plane magnetized CoFeB and YIG thin films in $kperp B$ and $kparallel B$ geometries by deducing the full set of material and spin-wave parameters, including spin-wave dispersion, hybridization of the fundamental mode with the higher-order perpendicular standing spin-wave modes and surface spin pinning. The compatibility of microwaves with low temperatures makes this approach attractive for cryogenic magnonics at the nanoscale.
Artificial spin ice (ASI) are arrays on nanoscaled magnets that can serve both as models for frustration in atomic spin ice as well as for exploring new spin-wave-based strategies to transmit, process, and store information. Here, we exploit the intricate interplay of the magnetization dynamics of two dissimilar ferromagnetic metals arranged on complimentary lattice sites in a square ASI to effectively modulate the spin-wave properties. We show that the interaction between the two sublattices results in unique spectra attributed to each sublattice and we observe inter- and intra-lattice dynamics facilitated by the distinct magnetization properties of the two materials. The dynamic properties are systematically studied by angular-dependent broadband ferromagnetic resonance and confirmed by micromagnetic simulations. We show that the combination of materials with dissimilar magnetic properties enables the realization of a wide range of two-dimensional structures potentially opening the door to new concepts in nanomagnonics.
Knowledge of the topology of the electronic ground state of materials has led to deep insights to novel phenomena such as the integer quantum Hall effect and fermion-number fractionalization, as well as other properties of matter. Joining two insulators of different topological classes produces fascinating boundary states in the band gap. Another exciting recent development is the bottom-up synthesis (from molecular precursors) of graphene nanoribbons (GNRs) with atomic precision control of their edge and width. Here we connect these two fields, and show for the first time that semiconducting GNRs of different width, edge, and end termination belong to different topological classes. The topology of GNRs is protected by spatial symmetries and dictated by the terminating unit cell. We have derived explicit formula for their topological invariants, and show that localized junction states developed between two GNRs of distinct topology may be tuned by lateral junction geometry. The topology of a GNR can be further modified by dopants, such as a periodic array of boron atoms. In a superlattice consisted of segments of doped and pristine GNRs, the junction states are stable spin centers, forming a Heisenberg antiferromagnetic spin 1/2 chain with tunable exchange interaction. The discoveries here are not only of scientific interest for studies of quasi one-dimensional systems, but also open a new path for design principles of future GNR-based devices through their topological characters.