No Arabic abstract
Electron correlations amplify quantum fluctuations and, as such, they have been recognized as the origin of a rich landscape of quantum phases. Whether and how they lead to gapless topological states is an outstanding question, and a framework that allows for determining novel phases and identifying new materials is in pressing need. Here we advance a general approach, in which strong correlations cooperate with crystalline symmetry to drive gapless topological states. We test this design principle by exploring Kondo lattice models and materials whose space group symmetries may promote different kinds of electronic degeneracies, with a particular focus on square-net systems. Weyl-Kondo nodal-line semimetals -- with nodes pinned to the Fermi energy -- are identified in both two and three dimensions. We apply the approach to identify materials for the realization of these correlation-driven topological semimetal phases. Our findings illustrate the potential of the proposed design principle to guide the search for new topological phases and materials in a broad range of strongly correlated systems.
One of the cornerstones for topological quantum computations is the Majorana zero mode, which has been intensively searched in fractional quantum Hall systems and topological superconductors. Several recent works suggest that such an exotic mode can also exist in a one-dimensional (1D) interacting double-wire setup even without long-range superconductivity. A notable instability in these proposals comes from interchannel single-particle tunneling that spoils the topological ground state degeneracy. Here we show that a 1D Dirac semimetal (DSM) nanowire is an ideal number-conserving platform to realize such Majorana physics. By inserting magnetic flux, a DSM nanowire is driven into a 1D crystalline-symmetry-protected semimetallic phase. Interaction enables the emergence of boundary Majorana zero modes, which is robust as a result of crystalline symmetry protection. We also explore several experimental consequences of Majorana signals.
In addition to novel surface states, topological insulators can also exhibit robust gapless states at crystalline defects. Step edges constitute a class of common defects on the surface of crystals. In this work we establish the topological nature of one-dimensional (1D) bound states localized at step edges of the [001] surface of a topological crystalline insulator (TCI) Pb$_{0.7}$Sn$_{0.3}$Se, both theoretically and experimentally. We show that the topological stability of the step edge states arises from an emergent particle-hole symmetry of the surface low-energy physics, and demonstrate the experimental signatures of the particle-hole symmetry breaking. We also reveal the effects of an external magnetic field on the 1D bound states. Our work suggests the possibility of similar topological step edge modes in other topological materials with a rocks-salt structure.
Spontaneously emergent chirality is an issue of fundamental importance across the natural sciences. It has been argued that a unidirectional (chiral) rotation of a mechanical ratchet is forbidden in thermal equilibrium, but becomes possible in systems out of equilibrium. Here we report our finding that a topologically nontrivial spin texture known as a skyrmion - a particle-like object in which spins point in all directions to wrap a sphere - constitutes such a ratchet. By means of Lorentz transmission electron microscopy we show that micron-sized crystals of skyrmions in thin films of Cu2OSeO3 and MnSi display a unidirectional rotation motion. Our numerical simulations based on a stochastic Landau-Lifshitz-Gilbert equation suggest that this rotation is driven solely by thermal fluctuations in the presence of a temperature gradient, whereas in thermal equilibrium it is forbidden by the Bohr-van Leeuwen theorem. We show that the rotational flow of magnons driven by the effective magnetic field of skyrmions gives rise to the skyrmion rotation, therefore suggesting that magnons can be used to control the motion of these spin textures.
A three-dimensional strong-topological-insulator or -semimetal hosts topological surface states which are often said to be gapless so long as time-reversal symmetry is preserved. This narrative can be mistaken when surface state degeneracies occur away from time-reversal-invariant momenta. The mirror-invariance of the system then becomes essential in protecting the existence of a surface Fermi surface. Here we show that such a case exists in the strong-topological-semimetal Bi$_4$Se$_3$. Angle-resolved photoemission spectroscopy and textit{ab initio} calculations reveal partial gapping of surface bands on the Bi$_2$Se$_3$-termination of Bi$_4$Se$_3$(111), where an 85 meV gap along $bar{Gamma}bar{K}$ closes to zero toward the mirror-invariant $bar{Gamma}bar{M}$ azimuth. The gap opening is attributed to an interband spin-orbit interaction that mixes states of opposite spin-helicity.
Three-dimensional (3D) topological insulators (TIs) are new forms of quantum matter that are characterized by their insulating bulk state and exotic metallic surface state, which hosts helical Dirac fermions1-2. Very recently, BiTeCl, one of the polar semiconductors, has been discovered by angle-resolved photoemission spectroscopy to be the first strong inversion asymmetric topological insulator (SIATI). In contrast to the previously discovered 3D TIs with inversion symmetry, the SIATI are expected to exhibit novel topological phenomena, including crystalline-surface-dependent topological surface states, intrinsic topological p-n junctions, and pyroelectric and topological magneto-electric effects3. Here, we report the first transport evidence for the robust topological surface state in the SIATI BiTeCl via observation of Shubnikov-de Haas (SdH) oscillations, which exhibit the 2D nature of the Fermi surface and pi Berry phase. The n = 1 Landau quantization of the topological surface state is observed at B . 12 T without gating, and the Fermi level is only 58.8 meV above the Dirac point, which gives rise to small effective mass, 0.055me, and quite large mobility, 4490 cm2s-1. Our findings will pave the way for future transport exploration of other new topological phenomena and potential applications for strong inversion asymmetric topological insulators.