Do you want to publish a course? Click here

Crystalline Symmetry-Protected Majorana Mode in Number-Conserving Dirac Semimetal Nanowires

114   0   0.0 ( 0 )
 Added by Rui-Xing Zhang
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

One of the cornerstones for topological quantum computations is the Majorana zero mode, which has been intensively searched in fractional quantum Hall systems and topological superconductors. Several recent works suggest that such an exotic mode can also exist in a one-dimensional (1D) interacting double-wire setup even without long-range superconductivity. A notable instability in these proposals comes from interchannel single-particle tunneling that spoils the topological ground state degeneracy. Here we show that a 1D Dirac semimetal (DSM) nanowire is an ideal number-conserving platform to realize such Majorana physics. By inserting magnetic flux, a DSM nanowire is driven into a 1D crystalline-symmetry-protected semimetallic phase. Interaction enables the emergence of boundary Majorana zero modes, which is robust as a result of crystalline symmetry protection. We also explore several experimental consequences of Majorana signals.



rate research

Read More

Electron correlations amplify quantum fluctuations and, as such, they have been recognized as the origin of a rich landscape of quantum phases. Whether and how they lead to gapless topological states is an outstanding question, and a framework that allows for determining novel phases and identifying new materials is in pressing need. Here we advance a general approach, in which strong correlations cooperate with crystalline symmetry to drive gapless topological states. We test this design principle by exploring Kondo lattice models and materials whose space group symmetries may promote different kinds of electronic degeneracies, with a particular focus on square-net systems. Weyl-Kondo nodal-line semimetals -- with nodes pinned to the Fermi energy -- are identified in both two and three dimensions. We apply the approach to identify materials for the realization of these correlation-driven topological semimetal phases. Our findings illustrate the potential of the proposed design principle to guide the search for new topological phases and materials in a broad range of strongly correlated systems.
Dirac nodal line semimetals (DNLSs) host relativistic quasiparticles in their one-dimensional (1D) Dirac nodal line (DNL) bands that are protected by certain crystalline symmetries. Their novel low-energy fermion quasiparticle excitations and transport properties invite studies of relativistic physics in the solid state where their linearly dispersing Dirac bands cross at continuous lines with four-fold degeneracy. In materials studied up to now, the four-fold degeneracy, however, has been vulnerable to suppression by the ubiquitous spin-orbit coupling (SOC). Despite the current effort to discover 3D DNLSs that are robust to SOC by theory, positive experimental evidence is yet to emerge. In 2D DNLSs, because of the decreased total density of states as compared with their 3D counterparts, it is anticipated that their physical properties would be dominated by the electronic states defined by the DNL. It has been even more challenging, however, to discover robust 2D DNLSs against SOC because of their lowered symmetry; no such materials have yet been predicted by theory. By combining molecular beam epitaxy growth, STM, nc-AFM characterisation, with DFT calculations and space group theory analysis, here we reveal a novel class of 2D crystalline DNLSs that host the exact symmetry that protects them against SOC. The discovered quantum material is a brick phase 3-AL Bi(110), whose symmetry protection and thermal stability are imparted by the compressive vdW epitaxial growth on black phosphorus substrates. The BP substrate templates the growth of 3-AL Bi(110) nano-islands in a non-symmorphic space group structure. This crystalline symmetry protects the DNL electronic phase against SOC independent of any orbital or elemental factors. We theoretically establish that this intrinsic symmetry imparts a general, robust protection of DNL in a series of isostructural 2D quantum materials.
We report the effect of hydrostatic pressure on the magnetotransport properties of the Weyl semimetal NbAs. Subtle changes can be seen in the $rho_{xx}(T)$ profiles with pressure up to 2.31 GPa. The Fermi surfaces undergo an anisotropic evolution under pressure: the extremal areas slightly increase in the $mathbf{k_x}$-$mathbf{k_y}$ plane, but decrease in the $mathbf{k_z}$-$mathbf{k_y}$($mathbf{k_x}$) plane. The topological features of the two pockets observed at atmospheric pressure, however, remain unchanged at 2.31 GPa. No superconductivity can be seen down to 0.3 K for all the pressures measured. By fitting the temperature dependence of specific heat to the Debye model, we obtain a small Sommerfeld coefficient $gamma_0=$ 0.09(1) mJ/(mol$cdot$K$^2$) and a large Debye temperature, $Theta_D=$ 450(9) K, confirming a hard crystalline lattice that is stable under pressure. We also studied the Kadowaki-Woods ratio of this low-carrier-density massless system, $R_{KW}=$ 3.2$times 10^4$ $muOmega$ cm mol$^2$ K$^2$ J$^{-2}$. After accounting for the small carrier density in NbAs, this $R_{KW}$ indicates a suppressed transport scattering rate relative to other metals.
Symmetry-protected topological superconductors (TSCs) can host multiple Majorana zero modes (MZMs) at their edges or vortex cores, while whether the Majorana braiding in such systems is non-Abelian in general remains an open question. Here we uncover in theory the unitary symmetry-protected non-Abelian statisitcs of MZMs and propose the experimental realization. We show that braiding two vortices with each hosting $N$ unitary symmetry-protected MZMs generically reduces to $N$ independent sectors, with each sector braiding two different Majorana modes. This renders the unitary symmetry-protected non-Abelian statistics. As a concrete example, we demonstrate the proposed non-Abelian statistics in a spin-triplet TSC which hosts two MZMs at each vortex and, interestingly, can be precisely mapped to a quantum anomalous Hall insulator. Thus the unitary symmetry-protected non-Abelian statistics can be verified in the latter insulating phase, with the application to realizing various topological quantum gates being studied. Finally, we propose a novel experimental scheme to realize the present study in an optical Raman lattice. Our work opens a new route for Majorana-based topological quantum computation.
90 - K. L. Zhang , Z. Song 2021
Edge states exhibit the nontrivial topology of energy band in the bulk. As localized states at boundaries, many-particle edge states may obey a special symmetry that is broken in the bulk. When local particle-particle interaction is induced, they may support a particular property. We consider an anisotropic two-dimensional Su-Schrieffer-Heeger Hubbard model and examine the appearance of $eta$-pairing edge states. In the absence of Hubbard interaction, the energy band is characterized by topologically invariant polarization in association with edge states. In the presence of on-site Hubbard interaction, $eta$-pairing edge states with an off-diagonal long-range order appear in the nontrivial topological phase, resulting in the condensation of pairs at the boundary. In addition, as Hamiltonian eigenstates, the edge states contain one paired component and one unpaired component. Neither affects the other; they act as two-fluid states. From numerical simulations of many-particle scattering processes, a clear manifestation and experimental detection scheme of topologically protected two-fluid edge states are provided.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا