Do you want to publish a course? Click here

Thermally Driven Ratchet Motion of Skyrmion Microcrystal and Topological Magnon Hall Effect

456   0   0.0 ( 0 )
 Added by Masahito Mochizuki
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

Spontaneously emergent chirality is an issue of fundamental importance across the natural sciences. It has been argued that a unidirectional (chiral) rotation of a mechanical ratchet is forbidden in thermal equilibrium, but becomes possible in systems out of equilibrium. Here we report our finding that a topologically nontrivial spin texture known as a skyrmion - a particle-like object in which spins point in all directions to wrap a sphere - constitutes such a ratchet. By means of Lorentz transmission electron microscopy we show that micron-sized crystals of skyrmions in thin films of Cu2OSeO3 and MnSi display a unidirectional rotation motion. Our numerical simulations based on a stochastic Landau-Lifshitz-Gilbert equation suggest that this rotation is driven solely by thermal fluctuations in the presence of a temperature gradient, whereas in thermal equilibrium it is forbidden by the Bohr-van Leeuwen theorem. We show that the rotational flow of magnons driven by the effective magnetic field of skyrmions gives rise to the skyrmion rotation, therefore suggesting that magnons can be used to control the motion of these spin textures.



rate research

Read More

106 - J. Matsuno , N. Ogawa , K. Yasuda 2016
Electron transport coupled with magnetism has attracted attention over the years as exemplified in anomalous Hall effect due to a Berry phase in momentum space. Another type of unconventional Hall effect -- topological Hall effect, originating from the real-space Berry phase, has recently become of great importance in the context of magnetic skyrmions. We have observed topological Hall effect in bilayers consisting of ferromagnetic SrRuO$_3$ and paramagnetic SrIrO$_3$ over a wide region of both temperature and magnetic field. The topological term rapidly decreases with the thickness of SrRuO$_3$, ending up with the complete disappearance at 7 unit cells of SrRuO$_3$. Combined with model calculation, we concluded that the topological Hall effect is driven by interface Dzyaloshinskii-Moriya interaction, which is caused by both the broken inversion symmetry and the strong spin-orbit coupling of SrIrO$_3$. Such interaction is expected to realize the N{e}el-type magnetic skyrmion, of which size is estimated to be $sim$10 nm from the magnitude of topological Hall resistivity. The results established that the high-quality oxide interface enables us to tune the chirality of the system; this can be a step towards the future topological electronics.
The anomalous Hall effect (AHE), a Hall signal occurring without an external magnetic field, is one of the most significant phenomena. However, understanding the AHE mechanism has been challenging and largely restricted to ferromagnetic metals. Here, we investigate the recently discovered AHE in the chiral antiferromagnet Mn3Sn by measuring a thermal analog of the AHE, known as an anomalous thermal Hall effect (ATHE). The amplitude of the ATHE scales with the anomalous Hall conductivity of Mn3Sn over a wide temperature range, demonstrating that the AHE of Mn3Sn arises from a dissipationless intrinsic mechanism associated with the Berry curvature. Moreover, we find that the dissipationless AHE is significantly stabilized by shifting the Fermi level toward the magnetic Weyl points. Thus, in Mn3Sn, the Berry curvature emerging from the proposed magnetic Weyl fermion state is a key factor for the observed AHE and ATHE.
Electron correlations amplify quantum fluctuations and, as such, they have been recognized as the origin of a rich landscape of quantum phases. Whether and how they lead to gapless topological states is an outstanding question, and a framework that allows for determining novel phases and identifying new materials is in pressing need. Here we advance a general approach, in which strong correlations cooperate with crystalline symmetry to drive gapless topological states. We test this design principle by exploring Kondo lattice models and materials whose space group symmetries may promote different kinds of electronic degeneracies, with a particular focus on square-net systems. Weyl-Kondo nodal-line semimetals -- with nodes pinned to the Fermi energy -- are identified in both two and three dimensions. We apply the approach to identify materials for the realization of these correlation-driven topological semimetal phases. Our findings illustrate the potential of the proposed design principle to guide the search for new topological phases and materials in a broad range of strongly correlated systems.
We have theoretically explored the intrinsic spin Hall effect (SHE) in the iron-based superconductor family with a variety of materials. The study is motivated by an observation that, in addition to an appreciable spin-orbit coupling in the Fe 3d states, a character of the band structure in which Dirac cones appear below the Fermi energy may play a crucial role in producing a large SHE. Our investigation does indeed predict a substantially large spin Hall conductivity in the heavily hole-doped regime such as KFe$_2$As$_2$. The magnitude of the SHE has turned out to be comparable with that for Pt despite a relatively small spin-orbit coupling, which we identify to come from a huge contribution from the gap opening induced by the spin-orbit coupling at the Dirac point, which can become close to the Fermi energy for the heavy hole doping.
We report the observation of a quantum anomalous Hall effect in twisted bilayer graphene showing Hall resistance quantized to within .1% of the von Klitzing constant $h/e^2$ at zero magnetic field.The effect is driven by intrinsic strong correlations, which polarize the electron system into a single spin and valley resolved moire miniband with Chern number $C=1$. In contrast to extrinsic, magnetically doped systems, the measured transport energy gap $Delta/k_Bapprox 27$~K is larger than the Curie temperature for magnetic ordering $T_Capprox 9$~K, and Hall quantization persists to temperatures of several Kelvin. Remarkably, we find that electrical currents as small as 1~nA can be used to controllably switch the magnetic order between states of opposite polarization, forming an electrically rewritable magnetic memory.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا