Do you want to publish a course? Click here

CCVS: Context-aware Controllable Video Synthesis

102   0   0.0 ( 0 )
 Added by Guillaume Le Moing
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

This presentation introduces a self-supervised learning approach to the synthesis of new video clips from old ones, with several new key elements for improved spatial resolution and realism: It conditions the synthesis process on contextual information for temporal continuity and ancillary information for fine control. The prediction model is doubly autoregressive, in the latent space of an autoencoder for forecasting, and in image space for updating contextual information, which is also used to enforce spatio-temporal consistency through a learnable optical flow module. Adversarial training of the autoencoder in the appearance and temporal domains is used to further improve the realism of its output. A quantizer inserted between the encoder and the transformer in charge of forecasting future frames in latent space (and its inverse inserted between the transformer and the decoder) adds even more flexibility by affording simple mechanisms for handling multimodal ancillary information for controlling the synthesis process (eg, a few sample frames, an audio track, a trajectory in image space) and taking into account the intrinsically uncertain nature of the future by allowing multiple predictions. Experiments with an implementation of the proposed approach give very good qualitative and quantitative results on multiple tasks and standard benchmarks.



rate research

Read More

Learning to insert an object instance into an image in a semantically coherent manner is a challenging and interesting problem. Solving it requires (a) determining a location to place an object in the scene and (b) determining its appearance at the location. Such an object insertion model can potentially facilitate numerous image editing and scene parsing applications. In this paper, we propose an end-to-end trainable neural network for the task of inserting an object instance mask of a specified class into the semantic label map of an image. Our network consists of two generative modules where one determines where the inserted object mask should be (i.e., location and scale) and the other determines what the object mask shape (and pose) should look like. The two modules are connected together via a spatial transformation network and jointly trained. We devise a learning procedure that leverage both supervised and unsupervised data and show our model can insert an object at diverse locations with various appearances. We conduct extensive experimental validations with comparisons to strong baselines to verify the effectiveness of the proposed network.
112 - Yong Zhang , Le Li , Zhilei Liu 2020
Kinship face synthesis is an interesting topic raised to answer questions like what will your future children look like?. Published approaches to this topic are limited. Most of the existing methods train models for one-versus-one kin relation, which only consider one parent face and one child face by directly using an auto-encoder without any explicit control over the resemblance of the synthesized face to the parent face. In this paper, we propose a novel method for controllable descendant face synthesis, which models two-versus-one kin relation between two parent faces and one child face. Our model consists of an inheritance module and an attribute enhancement module, where the former is designed for accurate control over the resemblance between the synthesized face and parent faces, and the latter is designed for control over age and gender. As there is no large scale database with father-mother-child kinship annotation, we propose an effective strategy to train the model without using the ground truth descendant faces. No carefully designed image pairs are required for learning except only age and gender labels of training faces. We conduct comprehensive experimental evaluations on three public benchmark databases, which demonstrates encouraging results.
Video-to-video synthesis (vid2vid) aims for converting high-level semantic inputs to photorealistic videos. While existing vid2vid methods can achieve short-term temporal consistency, they fail to ensure the long-term one. This is because they lack knowledge of the 3D world being rendered and generate each frame only based on the past few frames. To address the limitation, we introduce a novel vid2vid framework that efficiently and effectively utilizes all past generated frames during rendering. This is achieved by condensing the 3D world rendered so far into a physically-grounded estimate of the current frame, which we call the guidance image. We further propose a novel neural network architecture to take advantage of the information stored in the guidance images. Extensive experimental results on several challenging datasets verify the effectiveness of our approach in achieving world consistency - the output video is consistent within the entire rendered 3D world. https://nvlabs.github.io/wc-vid2vid/
State-of-the-art methods for counting people in crowded scenes rely on deep networks to estimate crowd density. They typically use the same filters over the whole image or over large image patches. Only then do they estimate local scale to compensate for perspective distortion. This is typically achieved by training an auxiliary classifier to select, for predefined image patches, the best kernel size among a limited set of choices. As such, these methods are not end-to-end trainable and restricted in the scope of context they can leverage. In this paper, we introduce an end-to-end trainable deep architecture that combines features obtained using multiple receptive field sizes and learns the importance of each such feature at each image location. In other words, our approach adaptively encodes the scale of the contextual information required to accurately predict crowd density. This yields an algorithm that outperforms state-of-the-art crowd counting methods, especially when perspective effects are strong.
Making a single network effectively address diverse contexts---learning the variations within a dataset or multiple datasets---is an intriguing step towards achieving generalized intelligence. Existing approaches of deepening, widening, and assembling networks are not cost effective in general. In view of this, networks which can allocate resources according to the context of the input and regulate flow of information across the network are effective. In this paper, we present Context-Aware Multipath Network (CAMNet), a multi-path neural network with data-dependant routing between parallel tensors. We show that our model performs as a generalized model capturing variations in individual datasets and multiple different datasets, both simultaneously and sequentially. CAMNet surpasses the performance of classification and pixel-labeling tasks in comparison with the equivalent single-path, multi-path, and deeper single-path networks, considering datasets individually, sequentially, and in combination. The data-dependent routing between tensors in CAMNet enables the model to control the flow of information end-to-end, deciding which resources to be common or domain-specific.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا