Do you want to publish a course? Click here

Context-Aware Synthesis and Placement of Object Instances

252   0   0.0 ( 0 )
 Added by Donghoon Lee
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

Learning to insert an object instance into an image in a semantically coherent manner is a challenging and interesting problem. Solving it requires (a) determining a location to place an object in the scene and (b) determining its appearance at the location. Such an object insertion model can potentially facilitate numerous image editing and scene parsing applications. In this paper, we propose an end-to-end trainable neural network for the task of inserting an object instance mask of a specified class into the semantic label map of an image. Our network consists of two generative modules where one determines where the inserted object mask should be (i.e., location and scale) and the other determines what the object mask shape (and pose) should look like. The two modules are connected together via a spatial transformation network and jointly trained. We devise a learning procedure that leverage both supervised and unsupervised data and show our model can insert an object at diverse locations with various appearances. We conduct extensive experimental validations with comparisons to strong baselines to verify the effectiveness of the proposed network.



rate research

Read More

This presentation introduces a self-supervised learning approach to the synthesis of new video clips from old ones, with several new key elements for improved spatial resolution and realism: It conditions the synthesis process on contextual information for temporal continuity and ancillary information for fine control. The prediction model is doubly autoregressive, in the latent space of an autoencoder for forecasting, and in image space for updating contextual information, which is also used to enforce spatio-temporal consistency through a learnable optical flow module. Adversarial training of the autoencoder in the appearance and temporal domains is used to further improve the realism of its output. A quantizer inserted between the encoder and the transformer in charge of forecasting future frames in latent space (and its inverse inserted between the transformer and the decoder) adds even more flexibility by affording simple mechanisms for handling multimodal ancillary information for controlling the synthesis process (eg, a few sample frames, an audio track, a trajectory in image space) and taking into account the intrinsically uncertain nature of the future by allowing multiple predictions. Experiments with an implementation of the proposed approach give very good qualitative and quantitative results on multiple tasks and standard benchmarks.
Localization of street objects from images has gained a lot of attention in recent years. We propose an approach to improve asset geolocation from street view imagery by enhancing the quality of the metadata associated with the images using Structure from Motion. The predicted object geolocation is further refined by imposing contextual geographic information extracted from OpenStreetMap. Our pipeline is validated experimentally against the state of the art approaches for geotagging traffic lights.
A layout to image (L2I) generation model aims to generate a complicated image containing multiple objects (things) against natural background (stuff), conditioned on a given layout. Built upon the recent advances in generative adversarial networks (GANs), existing L2I models have made great progress. However, a close inspection of their generated images reveals two major limitations: (1) the object-to-object as well as object-to-stuff relations are often broken and (2) each objects appearance is typically distorted lacking the key defining characteristics associated with the object class. We argue that these are caused by the lack of context-aware object and stuff feature encoding in their generators, and location-sensitive appearance representation in their discriminators. To address these limitations, two new modules are proposed in this work. First, a context-aware feature transformation module is introduced in the generator to ensure that the generated feature encoding of either object or stuff is aware of other co-existing objects/stuff in the scene. Second, instead of feeding location-insensitive image features to the discriminator, we use the Gram matrix computed from the feature maps of the generated object images to preserve location-sensitive information, resulting in much enhanced object appearance. Extensive experiments show that the proposed method achieves state-of-the-art performance on the COCO-Thing-Stuff and Visual Genome benchmarks.
252 - Yujia Sun , Geng Chen , Tao Zhou 2021
Camouflaged object detection (COD) is a challenging task due to the low boundary contrast between the object and its surroundings. In addition, the appearance of camouflaged objects varies significantly, e.g., object size and shape, aggravating the difficulties of accurate COD. In this paper, we propose a novel Context-aware Cross-level Fusion Network (C2F-Net) to address the challenging COD task. Specifically, we propose an Attention-induced Cross-level Fusion Module (ACFM) to integrate the multi-level features with informative attention coefficients. The fused features are then fed to the proposed Dual-branch Global Context Module (DGCM), which yields multi-scale feature representations for exploiting rich global context information. In C2F-Net, the two modules are conducted on high-level features using a cascaded manner. Extensive experiments on three widely used benchmark datasets demonstrate that our C2F-Net is an effective COD model and outperforms state-of-the-art models remarkably. Our code is publicly available at: https://github.com/thograce/C2FNet.
133 - Liu Liu , Bo Zhang , Jiangtong Li 2021
Image composition aims to generate realistic composite image by inserting an object from one image into another background image, where the placement (e.g., location, size, occlusion) of inserted object may be unreasonable, which would significantly degrade the quality of the composite image. Although some works attempted to learn object placement to create realistic composite images, they did not focus on assessing the plausibility of object placement. In this paper, we focus on object placement assessment task, which verifies whether a composite image is plausible in terms of the object placement. To accomplish this task, we construct the first Object Placement Assessment (OPA) dataset consisting of composite images and their rationality labels. Dataset is available at https://github.com/bcmi/Object-Placement-Assessment-Dataset-OPA.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا