Do you want to publish a course? Click here

Exponential Weights Algorithms for Selective Learning

124   0   0.0 ( 0 )
 Added by Mingda Qiao
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

We study the selective learning problem introduced by Qiao and Valiant (2019), in which the learner observes $n$ labeled data points one at a time. At a time of its choosing, the learner selects a window length $w$ and a model $hatell$ from the model class $mathcal{L}$, and then labels the next $w$ data points using $hatell$. The excess risk incurred by the learner is defined as the difference between the average loss of $hatell$ over those $w$ data points and the smallest possible average loss among all models in $mathcal{L}$ over those $w$ data points. We give an improved algorithm, termed the hybrid exponential weights algorithm, that achieves an expected excess risk of $O((loglog|mathcal{L}| + loglog n)/log n)$. This result gives a doubly exponential improvement in the dependence on $|mathcal{L}|$ over the best known bound of $O(sqrt{|mathcal{L}|/log n})$. We complement the positive result with an almost matching lower bound, which suggests the worst-case optimality of the algorithm. We also study a more restrictive family of learning algorithms that are bounded-recall in the sense that when a prediction window of length $w$ is chosen, the learners decision only depends on the most recent $w$ data points. We analyze an exponential weights variant of the ERM algorithm in Qiao and Valiant (2019). This new algorithm achieves an expected excess risk of $O(sqrt{log |mathcal{L}|/log n})$, which is shown to be nearly optimal among all bounded-recall learners. Our analysis builds on a generalized version of the selective mean prediction problem in Drucker (2013); Qiao and Valiant (2019), which may be of independent interest.



rate research

Read More

We extend the notion of minimax fairness in supervised learning problems to its natural conclusion: lexicographic minimax fairness (or lexifairness for short). Informally, given a collection of demographic groups of interest, minimax fairness asks that the error of the group with the highest error be minimized. Lexifairness goes further and asks that amongst all minimax fair solutions, the error of the group with the second highest error should be minimized, and amongst all of those solutions, the error of the group with the third highest error should be minimized, and so on. Despite its naturalness, correctly defining lexifairness is considerably more subtle than minimax fairness, because of inherent sensitivity to approximation error. We give a notion of approximate lexifairness that avoids this issue, and then derive oracle-efficient algorithms for finding approximately lexifair solutions in a very general setting. When the underlying empirical risk minimization problem absent fairness constraints is convex (as it is, for example, with linear and logistic regression), our algorithms are provably efficient even in the worst case. Finally, we show generalization bounds -- approximate lexifairness on the training sample implies approximate lexifairness on the true distribution with high probability. Our ability to prove generalization bounds depends on our choosing definitions that avoid the instability of naive definitions.
We present polynomial time and sample efficient algorithms for learning an unknown depth-2 feedforward neural network with general ReLU activations, under mild non-degeneracy assumptions. In particular, we consider learning an unknown network of the form $f(x) = {a}^{mathsf{T}}sigma({W}^mathsf{T}x+b)$, where $x$ is drawn from the Gaussian distribution, and $sigma(t) := max(t,0)$ is the ReLU activation. Prior works for learning networks with ReLU activations assume that the bias $b$ is zero. In order to deal with the presence of the bias terms, our proposed algorithm consists of robustly decomposing multiple higher order tensors arising from the Hermite expansion of the function $f(x)$. Using these ideas we also establish identifiability of the network parameters under minimal assumptions.
We consider a model of selective prediction, where the prediction algorithm is given a data sequence in an online fashion and asked to predict a pre-specified statistic of the upcoming data points. The algorithm is allowed to choose when to make the prediction as well as the length of the prediction window, possibly depending on the observations so far. We prove that, even without any distributional assumption on the input data stream, a large family of statistics can be estimated to non-trivial accuracy. To give one concrete example, suppose that we are given access to an arbitrary binary sequence $x_1, ldots, x_n$ of length $n$. Our goal is to accurately predict the average observation, and we are allowed to choose the window over which the prediction is made: for some $t < n$ and $m le n - t$, after seeing $t$ observations we predict the average of $x_{t+1}, ldots, x_{t+m}$. This particular problem was first studied in Drucker (2013) and referred to as the density prediction game. We show that the expected squared error of our prediction can be bounded by $O(frac{1}{log n})$ and prove a matching lower bound, which resolves an open question raised in Drucker (2013). This result holds for any sequence (that is not adaptive to when the prediction is made, or the predicted value), and the expectation of the error is with respect to the randomness of the prediction algorithm. Our results apply to more general statistics of a sequence of observations, and we highlight several open directions for future work.
We study the combinatorial pure exploration problem Best-Set in stochastic multi-armed bandits. In a Best-Set instance, we are given $n$ arms with unknown reward distributions, as well as a family $mathcal{F}$ of feasible subsets over the arms. Our goal is to identify the feasible subset in $mathcal{F}$ with the maximum total mean using as few samples as possible. The problem generalizes the classical best arm identification problem and the top-$k$ arm identification problem, both of which have attracted significant attention in recent years. We provide a novel instance-wise lower bound for the sample complexity of the problem, as well as a nontrivial sampling algorithm, matching the lower bound up to a factor of $ln|mathcal{F}|$. For an important class of combinatorial families, we also provide polynomial time implementation of the sampling algorithm, using the equivalence of separation and optimization for convex program, and approximate Pareto curves in multi-objective optimization. We also show that the $ln|mathcal{F}|$ factor is inevitable in general through a nontrivial lower bound construction. Our results significantly improve several previous results for several important combinatorial constraints, and provide a tighter understanding of the general Best-Set problem. We further introduce an even more general problem, formulated in geometric terms. We are given $n$ Gaussian arms with unknown means and unit variance. Consider the $n$-dimensional Euclidean space $mathbb{R}^n$, and a collection $mathcal{O}$ of disjoint subsets. Our goal is to determine the subset in $mathcal{O}$ that contains the $n$-dimensional vector of the means. The problem generalizes most pure exploration bandit problems studied in the literature. We provide the first nearly optimal sample complexity upper and lower bounds for the problem.
This paper leverages machine-learned predictions to design competitive algorithms for online conversion problems with the goal of improving the competitive ratio when predictions are accurate (i.e., consistency), while also guaranteeing a worst-case competitive ratio regardless of the prediction quality (i.e., robustness). We unify the algorithmic design of both integral and fractional conversion problems, which are also known as the 1-max-search and one-way trading problems, into a class of online threshold-based algorithms (OTA). By incorporating predictions into design of OTA, we achieve the Pareto-optimal trade-off of consistency and robustness, i.e., no online algorithm can achieve a better consistency guarantee given for a robustness guarantee. We demonstrate the performance of OTA using numerical experiments on Bitcoin conversion.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا