No Arabic abstract
We present polynomial time and sample efficient algorithms for learning an unknown depth-2 feedforward neural network with general ReLU activations, under mild non-degeneracy assumptions. In particular, we consider learning an unknown network of the form $f(x) = {a}^{mathsf{T}}sigma({W}^mathsf{T}x+b)$, where $x$ is drawn from the Gaussian distribution, and $sigma(t) := max(t,0)$ is the ReLU activation. Prior works for learning networks with ReLU activations assume that the bias $b$ is zero. In order to deal with the presence of the bias terms, our proposed algorithm consists of robustly decomposing multiple higher order tensors arising from the Hermite expansion of the function $f(x)$. Using these ideas we also establish identifiability of the network parameters under minimal assumptions.
We investigate the parameter-space geometry of recurrent neural networks (RNNs), and develop an adaptation of path-SGD optimization method, attuned to this geometry, that can learn plain RNNs with ReLU activations. On several datasets that require capturing long-term dependency structure, we show that path-SGD can significantly improve trainability of ReLU RNNs compared to RNNs trained with SGD, even with various recently suggested initialization schemes.
Neural networks have been widely used to solve complex real-world problems. Due to the complicate, nonlinear, non-convex nature of neural networks, formal safety guarantees for the output behaviors of neural networks will be crucial for their applications in safety-critical systems.In this paper, the output reachable set computation and safety verification problems for a class of neural networks consisting of Rectified Linear Unit (ReLU) activation functions are addressed. A layer-by-layer approach is developed to compute output reachable set. The computation is formulated in the form of a set of manipulations for a union of polyhedra, which can be efficiently applied with the aid of polyhedron computation tools. Based on the output reachable set computation results, the safety verification for a ReLU neural network can be performed by checking the intersections of unsafe regions and output reachable set described by a union of polyhedra. A numerical example of a randomly generated ReLU neural network is provided to show the effectiveness of the approach developed in this paper.
We study the problem of PAC learning one-hidden-layer ReLU networks with $k$ hidden units on $mathbb{R}^d$ under Gaussian marginals in the presence of additive label noise. For the case of positive coefficients, we give the first polynomial-time algorithm for this learning problem for $k$ up to $tilde{O}(sqrt{log d})$. Previously, no polynomial time algorithm was known, even for $k=3$. This answers an open question posed by~cite{Kliv17}. Importantly, our algorithm does not require any assumptions about the rank of the weight matrix and its complexity is independent of its condition number. On the negative side, for the more general task of PAC learning one-hidden-layer ReLU networks with arbitrary real coefficients, we prove a Statistical Query lower bound of $d^{Omega(k)}$. Thus, we provide a separation between the two classes in terms of efficient learnability. Our upper and lower bounds are general, extending to broader families of activation functions.
We consider the problem of learning an unknown ReLU network with respect to Gaussian inputs and obtain the first nontrivial results for networks of depth more than two. We give an algorithm whose running time is a fixed polynomial in the ambient dimension and some (exponentially large) function of only the networks parameters. Our bounds depend on the number of hidden units, depth, spectral norm of the weight matrices, and Lipschitz constant of the overall network (we show that some dependence on the Lipschitz constant is necessary). We also give a bound that is doubly exponential in the size of the network but is independent of spectral norm. These results provably cannot be obtained using gradient-based methods and give the first example of a class of efficiently learnable neural networks that gradient descent will fail to learn. In contrast, prior work for learning networks of depth three or higher requires exponential time in the ambient dimension, even when the above parameters are bounded by a constant. Additionally, all prior work for the depth-two case requires well-conditioned weights and/or positive coefficients to obtain efficient run-times. Our algorithm does not require these assumptions. Our main technical tool is a type of filtered PCA that can be used to iteratively recover an approximate basis for the subspace spanned by the hidden units in the first layer. Our analysis leverages new structural results on lattice polynomials from tropical geometry.
The number of linear regions is one of the distinct properties of the neural networks using piecewise linear activation functions such as ReLU, comparing with those conventional ones using other activation functions. Previous studies showed this property reflected the expressivity of a neural network family ([14]); as a result, it can be used to characterize how the structural complexity of a neural network model affects the function it aims to compute. Nonetheless, it is challenging to directly compute the number of linear regions; therefore, many researchers focus on estimating the bounds (in particular the upper bound) of the number of linear regions for deep neural networks using ReLU. These methods, however, attempted to estimate the upper bound in the entire input space. The theoretical methods are still lacking to estimate the number of linear regions within a specific area of the input space, e.g., a sphere centered at a training data point such as an adversarial example or a backdoor trigger. In this paper, we present the first method to estimate the upper bound of the number of linear regions in any sphere in the input space of a given ReLU neural network. We implemented the method, and computed the bounds in deep neural networks using the piece-wise linear active function. Our experiments showed that, while training a neural network, the boundaries of the linear regions tend to move away from the training data points. In addition, we observe that the spheres centered at the training data points tend to contain more linear regions than any arbitrary points in the input space. To the best of our knowledge, this is the first study of bounding linear regions around a specific data point. We consider our work as a first step toward the investigation of the structural complexity of deep neural networks in a specific input area.