No Arabic abstract
We present optical and near-infrared ($ugriYJH$) photometry of host galaxies of Type Ia supernovae (SN~Ia) observed by the textit{Carnegie Supernova Project-I}. We determine host galaxy stellar masses and, for the first time, study their correlation with SN~Ia standardized luminosity across optical and near-infrared ($uBgVriYJH$) bands. In the individual bands, we find that SNe~Ia are more luminous in more massive hosts with luminosity offsets ranging between $-0.07 pm0.03$ mag to $-0.15pm0.04$ mag after light-curve standardization. The slope of the SN~Ia Hubble residual-host mass relation is negative across all $uBgVriYJH$ bands with values ranging between $-0.036pm 0.025$ mag/dex to $-0.097pm 0.027$ mag/dex -- implying that SNe~Ia in more massive galaxies are brighter than expected. The near-constant observed correlations across optical and near-infrared bands indicate that dust may not play a significant role in the observed luminosity offset--host mass correlation. We measure projected separations between SNe~Ia and their host centers, and find that SNe~Ia that explode beyond a projected 10 kpc have a $rm 30% to 50%$ reduction of the dispersion in Hubble residuals across all bands -- making them a more uniform subset of SNe~Ia. Dust in host galaxies, peculiar velocities of nearby SN~Ia, or a combination of both may drive this result as the color excesses of SNe~Ia beyond 10 kpc are found to be generally lower than those interior, but there is also a diminishing trend of the dispersion as we exclude nearby events. We do not find that SN~Ia average luminosity varies significantly when they are grouped in various host morphological types. Host galaxy data from this work will be useful, in conjunction with future high-redshift samples, in constraining cosmological parameters.
We use the spectroscopy and homogeneous photometry of 97 Type Ia supernovae obtained by the emph{Carnegie Supernova Project} as well as a subset of 36 Type Ia supernovae presented by Zheng et al. (2018) to examine maximum-light correlations in a four-dimensional (4-D) parameter space: $B$-band absolute magnitude, $M_B$, ion{Si}{2}~$lambda6355$ velocity, vsi, and ion{Si}{2} pseudo-equivalent widths pEW(ion{Si}{2}~$lambda6355$) and pEW(ion{Si}{2}~$lambda5972$). It is shown using Gaussian mixture models (GMMs) that the original four groups in the Branch diagram are well-defined and robust in this parameterization. We find three continuous groups that describe the behavior of our sample in [$M_B$, vsi] space. Extending the GMM into the full 4-D space yields a grouping system that only slightly alters group definitions in the [$M_B$, vsi] projection, showing that most of the clustering information in [$M_B$, vsi] is already contained in the 2-D GMM groupings. However, the full 4-D space does divide group membership for faster objects between core-normal and broad-line objects in the Branch diagram. A significant correlation between $M_B$ and pEW(ion{Si}{2}~$lambda5972$) is found, which implies that Branch group membership can be well-constrained by spectroscopic quantities alone. In general, we find that higher-dimensional GMMs reduce the uncertainty of group membership for objects between the originally defined Branch groups. We also find that the broad-line Branch group becomes nearly distinct with the inclusion of vsi, indicating that this subclass of SNe Ia may be somehow different from the other groups.
This is the first release of optical spectroscopic data of low-redshift Type Ia supernovae (SNe Ia) by the Carnegie Supernova Project including 604 previously unpublished spectra of 93 SNe Ia. The observations cover a range of phases from 12 days before to over 150 days after the time of B-band maximum light. With the addition of 228 near-maximum spectra from the literature we study the diversity among SNe Ia in a quantitative manner. For that purpose, spectroscopic parameters are employed such as expansion velocities from spectral line blueshifts, and pseudo-equivalent widths (pW). The values of those parameters at maximum light are obtained for 78 objects, thus providing a characterization of SNe Ia that may help to improve our understanding of the properties of the exploding systems and the thermonuclear flame propagation. Two objects, namely SNe 2005M and 2006is, stand out from the sample by showing peculiar Si II and S II velocities but otherwise standard velocities for the rest of the ions. We further study the correlations between spectroscopic and photometric parameters such as light-curve decline rate and color. In agreement with previous studies, we find that the pW of Si II absorption features are very good indicators of light-curve decline rate. Furthermore, we demonstrate that parameters such as pW2(SiII4130) and pW6(SiII5972) provide precise calibrations of the peak B-band luminosity with dispersions of ~0.15 mag. In the search for a secondary parameter in the calibration of peak luminosity for SNe Ia, we find a ~2--3-sigma correlation between B-band Hubble residuals and the velocity at maximum light of S II and Si II lines.
The Carnegie Supernova Project-II (CSP-II) was an NSF-funded, four-year program to obtain optical and near-infrared observations of a Cosmology sample of $sim100$ Type Ia supernovae located in the smooth Hubble flow ($0.03 lesssim z lesssim 0.10$). Light curves were also obtained of a Physics sample composed of 90 nearby Type Ia supernovae at $z leq 0.04$ selected for near-infrared spectroscopic time-series observations. The primary emphasis of the CSP-II is to use the combination of optical and near-infrared photometry to achieve a distance precision of better than 5%. In this paper, details of the supernova sample, the observational strategy, and the characteristics of the photometric data are provided. In a companion paper, the near-infrared spectroscopy component of the project is presented.
We present $81$ near-infrared (NIR) spectra of $30$ Type II supernovae (SNe II) from the Carnegie Supernova Project-II (CSP-II), the largest such dataset published to date. We identify a number of NIR features and characterize their evolution over time. The NIR spectroscopic properties of SNe II fall into two distinct groups. This classification is first based on the strength of the He I $lambda1.083,mu$m absorption during the plateau phase; SNe II are either significantly above (spectroscopically strong) or below $50$ angstroms (spectroscopically weak) in pseudo equivalent width. However between the two groups, other properties, such as the timing of CO formation and the presence of Sr II, are also observed. Most surprisingly, the distinct weak and strong NIR spectroscopic classes correspond to SNe II with slow and fast declining light curves, respectively. These two photometric groups match the modern nomenclature of SNe IIP and IIL. Including NIR spectra previously published, 18 out of 19 SNe II follow this slow declining-spectroscopically weak and fast declining-spectroscopically strong correspondence. This is in apparent contradiction to the recent findings in the optical that slow and fast decliners show a continuous distribution of properties. The weak SNe II show a high-velocity component of helium that may be caused by a thermal excitation from a reverse-shock created by the outer ejecta interacting with the red supergiant wind, but the origin of the observed dichotomy is not understood. Further studies are crucial in determining whether the apparent differences in the NIR are due to distinct physical processes or a gap in the current data set.
We present the $H$-band wavelength region of thirty post-maximum light near-infrared (NIR) spectra of fourteen transitional and sub-luminous type Ia supernovae (SNe Ia), extending from $+$5d to +20d relative to the epoch of $B$-band maximum. We introduce a new observable, the blue-edge velocity, $v_{edge}$, of the prominent Fe/Co/Ni-peak $H$-band emission feature which is quantitatively measured. The $v_{edge}$ parameter is found to slowly decrease over sub-type ranging from around $-$13,000km/s for transitional SNe~Ia, down to $-$5,000km/s for the sub-luminous SNe Ia. Furthermore, inspection of the +10$pm$3d spectra indicates that $v_{edge}$ is correlated with the color-stretch parameter, s$_{BV}$, and hence with peak luminosity. These results follow the previous findings that brighter SNe Ia tend to have $^{56}$Ni located at higher velocities as compared to sub-luminous objects. As $v_{edge}$ is a model-independent parameter, we propose it can be used in combination with traditional observational diagnostics to provide a new avenue to robustly distinguish between leading SNe Ia explosion models.