Do you want to publish a course? Click here

SimNet: Computer Architecture Simulation using Machine Learning

136   0   0.0 ( 0 )
 Added by Lingda Li
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

While cycle-accurate simulators are essential tools for architecture research, design, and development, their practicality is limited by an extremely long time-to-solution for realistic problems under investigation. This work describes a concerted effort, where machine learning (ML) is used to accelerate discrete-event simulation. First, an ML-based instruction latency prediction framework that accounts for both static instruction/architecture properties and dynamic execution context is constructed. Then, a GPU-accelerated parallel simulator is implemented based on the proposed instruction latency predictor, and its simulation accuracy and throughput are validated and evaluated against a state-of-the-art simulator. Leveraging modern GPUs, the ML-based simulator outperforms traditional simulators significantly.



rate research

Read More

Porting code from CPU to GPU is costly and time-consuming; Unless much time is invested in development and optimization, it is not obvious, a priori, how much speed-up is achievable or how much room is left for improvement. Knowing the potential speed-up a priori can be very useful: It can save hundreds of engineering hours, help programmers with prioritization and algorithm selection. We aim to address this problem using machine learning in a supervised setting, using solely the single-threaded source code of the program, without having to run or profile the code. We propose a static analysis-based cross-architecture performance prediction framework (Static XAPP) which relies solely on program properties collected using static analysis of the CPU source code and predicts whether the potential speed-up is above or below a given threshold. We offer preliminary results that show we can achieve 94% accuracy in binary classification, in average, across different thresholds
We present SimNet, an AI-driven multi-physics simulation framework, to accelerate simulations across a wide range of disciplines in science and engineering. Compared to traditional numerical solvers, SimNet addresses a wide range of use cases - coupled forward simulations without any training data, inverse and data assimilation problems. SimNet offers fast turnaround time by enabling parameterized system representation that solves for multiple configurations simultaneously, as opposed to the traditional solvers that solve for one configuration at a time. SimNet is integrated with parameterized constructive solid geometry as well as STL modules to generate point clouds. Furthermore, it is customizable with APIs that enable user extensions to geometry, physics and network architecture. It has advanced network architectures that are optimized for high-performance GPU computing, and offers scalable performance for multi-GPU and multi-Node implementation with accelerated linear algebra as well as FP32, FP64 and TF32 computations. In this paper we review the neural network solver methodology, the SimNet architecture, and the various features that are needed for effective solution of the PDEs. We present real-world use cases that range from challenging forward multi-physics simulations with turbulence and complex 3D geometries, to industrial design optimization and inverse problems that are not addressed efficiently by the traditional solvers. Extensive comparisons of SimNet results with open source and commercial solvers show good correlation.
Machine learning techniques have influenced the field of computer architecture like many other fields. This paper studies how the fundamental machine learning techniques can be applied towards computer architecture problems. We also provide a detailed survey of computer architecture research that employs different machine learning methods. Finally, we present some future opportunities and the outstanding challenges that need to be overcome to exploit full potential of machine learning for computer architecture.
This paper introduces Archer, a community-based computing resource for computer architecture research and education. The Archer infrastructure integrates virtualization and batch scheduling middleware to deliver high-throughput computing resources aggregated from resources distributed across wide-area networks and owned by different participating entities in a seamless manner. The paper discusses the motivations leading to the design of Archer, describes its core middleware components, and presents an analysis of the functionality and performance of a prototype wide-area deployment running a representative computer architecture simulation workload.
The potential of Si and SiGe-based devices for the scaling of quantum circuits is tainted by device variability. Each device needs to be tuned to operation conditions. We give a key step towards tackling this variability with an algorithm that, without modification, is capable of tuning a 4-gate Si FinFET, a 5-gate GeSi nanowire and a 7-gate SiGe heterostructure double quantum dot device from scratch. We achieve tuning times of 30, 10, and 92 minutes, respectively. The algorithm also provides insight into the parameter space landscape for each of these devices. These results show that overarching solutions for the tuning of quantum devices are enabled by machine learning.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا