Do you want to publish a course? Click here

Robust magnetic anisotropy of a monolayer of hexacoordinate Fe( ii ) complexes assembled on Cu(111)

67   0   0.0 ( 0 )
 Added by Marie-Laure Boillot
 Publication date 2021
  fields Physics
and research's language is English
 Authors Massine Kelai




Ask ChatGPT about the research

The tris pyrazolyl borate ligand imposes a rigid scaffold around Fe( ii ) ensuring a robust magnetic anisotropy when the molecules assembled as monolayers suffer from the dissymmetric environment of the substrate/vacuum interface.



rate research

Read More

315 - N. Neel , J. Kroeger , R. Berndt 2010
Single Co atoms, which exhibit a Kondo effect on Cu(111), are contacted with Cu and Fe tips in a low-temperature scanning tunneling microscope. With Fe tips, the Kondo effect persists with the Abrikosov-Suhl resonance significantly broadened. In contrast, for Cu-covered W tips, the resonance width remains almost constant throughout the tunneling and contact ranges. The distinct changes of the line width are interpreted in terms of modifications of the Co d state occupation owing to hybridization with the tip apex atoms.
We investigate the interplay between the structural reconstruction and the magnetic properties of Fe doublelayers on Ir (111)-substrate using first-principles calculations based on density functional theory and mapping of the total energies on an atomistic spin model. We show that, if a second Fe monolayer is deposited on Fe/Ir (111), the stacking may change from hexagonal close-packed to bcc (110)-like accompanied by a reduction of symmetry from trigonal to centered rectangular. Although the bcc-like surface has a lower coordination, we find that this is the structural ground state. This reconstruction has a major impact on the magnetic structure. We investigate in detail the changes in the magnetic exchange interaction, the magnetocrystalline anisotropy, and the Dzyaloshinskii Moriya interaction depending on the stacking sequence of the Fe double-layer. Based on our findings, we suggest a new technique to engineer Dzyaloshinskii Moriya interactions in multilayer systems employing symmetry considerations. The resulting anisotropic Dzyaloshinskii-Moriya interactions may stabilize higher-order skyrmions or antiskyrmions.
Boron forms compounds with nearly all metals, with notable exception of copper and other group IB and IIB elements. Here, we report an unexpected discovery of ordered copper boride grown epitaxially on Cu(111) under ultrahigh vacuum. Scanning tunneling microscopy experiments combined with ab initio evolutionary structure prediction reveal a remarkably complex structure of 2D-Cu8B14. Strong intra-layer p-d hybridization and a large amount of charge transfer between Cu and B atoms are the key factors for the emergence of copper boride. This makes the discovered material unique and opens up the possibility of synthesizing ordered low-dimensional structures in similar immiscible systems.
We demonstrate single crystal growth of wafer-scale hexagonal boron nitride (hBN), an insulating atomic thin monolayer, on high-symmetry index surface plane Cu(111). The unidirectional epitaxial growth is guaranteed by large binding energy difference, ~0.23 eV, between A- and B-steps edges on Cu(111) docking with B6N7 clusters, confirmed by density functional theory calculations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا