No Arabic abstract
We demonstrate single crystal growth of wafer-scale hexagonal boron nitride (hBN), an insulating atomic thin monolayer, on high-symmetry index surface plane Cu(111). The unidirectional epitaxial growth is guaranteed by large binding energy difference, ~0.23 eV, between A- and B-steps edges on Cu(111) docking with B6N7 clusters, confirmed by density functional theory calculations.
Monolayer hBN has attracted interest as a potentially weakly interacting 2D insulating layer in heterostructures. Recently, wafer-scale hBN growth on Cu(111) has been demonstrated for semiconductor chip fabrication processes and transistor action. For all these applications, the perturbation on the underlying electronically active layers is critical. For example, while hBN on Cu(111) has been shown to preserve the Cu(111) surface state 2D electron gas, it was previously unknown how this varies over the sample and how it is affected by local electronic corrugation. Here, we demonstrate that the Cu(111) surface state under wafer-scale hBN is robustly homogeneous in energy and spectral weight over nanometer length scales and over atomic terraces. We contrast this with a benchmark spectral feature associated with interaction between BN atoms and the Cu surface, which varies with the Moire pattern of the hBN/Cu(111) sample and is dependent on atomic registry. This work demonstrates that fragile 2D electron systems and interface states are largely unperturbed by local variations created by the hBN due to atomic-scale interactions with the substrate, thus providing a remarkably transparent window on low-energy electronic structure below the hBN monolayer.
Two-dimensional (2D) ferromagnetic materials have been exhibiting promising potential in applications, such as spintronics devices. To grow epitaxial magnetic films on silicon substrate, in the single-layer limit, is practically important but challenging. In this study, we realized the epitaxial growth of MnSn monolayer on Si(111) substrate, with an atomically thin Sn/Si(111)-$2sqrt{3}times2sqrt{3}$- buffer layer, and controlled the MnSn thickness with atomic-layer precision. We discovered the ferromagnetism in MnSn monolayer with the Curie temperature (Tc) of ~54 K. As the MnSn film is grown to 4 monolayers, Tc increases accordingly to ~235 K. The lattice of the epitaxial MnSn monolayer as well as the Sn/Si(111)-$2sqrt{3}times2sqrt{3}$ is perfectly compatible with silicon, and thus an sharp interface is formed between MnSn, Sn and Si. This system provides a new platform for exploring the 2D ferromagnetism, integrating magnetic monolayers into silicon-based technology, and engineering the spintronics heterostructures.
The strong light-matter interaction in transition Metal dichalcogenides (TMDs) monolayers (MLs) is governed by robust excitons. Important progress has been made to control the dielectric environment surrounding the MLs, especially through hexagonal boron nitride (hBN) encapsulation, which drastically reduces the inhomogeneous contribution to the exciton linewidth. Most studies use exfoliated hBN from high quality flakes grown under high pressure. In this work, we show that hBN grown by molecular beam epitaxy (MBE) over a large surface area substrate has a similarly positive impact on the optical emission from TMD MLs. We deposit MoS$_2$ and MoSe$_2$ MLs on ultrathin hBN films (few MLs thick) grown on Ni/MgO(111) by MBE. Then we cover them with exfoliated hBN to finally obtain an encapsulated sample : exfoliated hBN/TMD ML/MBE hBN. We observe an improved optical quality of our samples compared to TMD MLs exfoliated directly on SiO$_2$ substrates. Our results suggest that hBN grown by MBE could be used as a flat and charge free substrate for fabricating TMD-based heterostructures on a larger scale.
The structural and electronic properties of hexagonal boron nitride (hBN) grown on stepped Ni surfaces are systematically investigated using a cylindrical Ni crystal as a tunable substrate. Our experiments reveal homogeneous hBN monolayer coating of the entire Ni curved surface, which in turn undergoes an overall faceting. The faceted system is defined by step-free hBN/Ni(111) terraces alternating with strongly tilted hBN/Ni(115) or hBN/Ni(110) nanostripes, depending on whether we have A-type or B-type vicinal surfaces, respectively. Such deep substrate self-organization is explained by both the rigidity of the hBN lattice and the lack of registry with Ni crystal planes in the vicinity of the (111) surface. The analysis of the electronic properties by photoemission and absorption spectroscopies reveal a weaker hBN/Ni interaction in (110)- and (115)-oriented facets, as well as an upward shift of the valence band with respect to the band position at the hBN/Ni(111) terrace.
Bulk hexagonal boron nitride (hBN) is a highly nonlinear natural hyperbolic material that attracts major attention in modern nanophotonics applications. However, studies of its optical properties in the visible part of the spectrum and quantum emitters hosted by bulk hBN have not been reported to date. In this work we study the emission properties of hBN crystals in the red spectral range using sub-bandgap optical excitation. Quantum emission from defects is observed at room temperature and characterized in detail. Our results advance the use of hBN in quantum nanophotonics technologies and enhance our fundamental understanding of its optical properties.