Do you want to publish a course? Click here

Formation of copper boride on Cu(111)

134   0   0.0 ( 0 )
 Added by Xiang-Feng Zhou
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Boron forms compounds with nearly all metals, with notable exception of copper and other group IB and IIB elements. Here, we report an unexpected discovery of ordered copper boride grown epitaxially on Cu(111) under ultrahigh vacuum. Scanning tunneling microscopy experiments combined with ab initio evolutionary structure prediction reveal a remarkably complex structure of 2D-Cu8B14. Strong intra-layer p-d hybridization and a large amount of charge transfer between Cu and B atoms are the key factors for the emergence of copper boride. This makes the discovered material unique and opens up the possibility of synthesizing ordered low-dimensional structures in similar immiscible systems.



rate research

Read More

350 - H. Vita , S. Boettcher , K. Horn 2014
Understanding the nature of the interaction at the graphene/metal interfaces is the basis for graphene-based electron- and spin-transport devices. Here we investigate the hybridization between graphene- and metal-derived electronic states by studying the changes induced through intercalation of a pseudomorphic monolayer of Cu in between graphene and Ir(111), using scanning tunnelling microscopy and photoelectron spectroscopy in combination with density functional theory calculations. We observe the modifications in the band structure by the intercalation process and its concomitant changes in the charge distribution at the interface. Through a state-selective analysis of band hybridization, we are able to determine their contributions to the valence band of graphene giving rise to the gap opening. Our methodology reveals the mechanisms that are responsible for the modification of the electronic structure of graphene at the Dirac point, and permits to predict the electronic structure of other graphene-metal interfaces.
We report high resolution transmission electron microscopy and classical molecular dynamics simulation results of mechanically stretching copper nanowires conducting to linear atomic suspended chains (LACs) formation. In contrast with some previous experimental and theoretical work in literature that stated that the formation of LACs for copper should not exist our results showed the existence of LAC for the [111], [110], and [100] crystallographic directions, being thus the sequence of most probable occurence.
We present results of density-functional calculations on the magnetic properties of Cr, Mn, Fe and Co nano-clusters (1 to 9 atoms large) supported on Cu(001) and Cu(111). The inter-atomic exchange coupling is found to depend on competing mechanisms, namely ferromagnetic double exchange and antiferromagnetic kinetic exchange. Hybridization-induced broadening of the resonances is shown to be important for the coupling strength. The cluster shape is found to weaken the coupling via a mechanism that comprises the different orientation of the atomic d-orbitals and the strength of nearest-neighbour hopping. Especially in Fe clusters, a correlation of binding energy and exchange coupling is also revealed.
Transition metal impurities such as nickel, copper, and iron, in solid-state materials like silicon have a significant impact on the electrical performance of integrated circuits and solar cells. To study the impact of copper impurities inside bulk silicon on the electrical properties of the material, one needs to understand the configurational space of copper atoms incorporated inside the silicon lattice. In this work, we performed ReaxFF reactive force field based molecular dynamics simulations, studying different configurations of individual and crystalline copper atoms inside bulk silicon by looking at the diffusional behavior of copper in silicon. The ReaxFF Cu/Si parameter set was developed by training against DFT data, including the energy barrier for an individual Cu-atom inside a silicon lattice. We found that the diffusion of copper atoms has a direct relationship with the temperature. Moreover, it is also shown that individual copper atoms start to clusterize inside bulk silicon at elevated temperatures. Our simulation results provide a comprehensive picture of the effects of temperature and copper concentration on the crystallization of individual copper inside silicon lattice. Finally, the stress-strain relationship of Cu/Si compounds under uniaxial tensile loading have been obtained. Our results indicate a decrease in the elastic modulus with increasing level of Cu-impurity concentration. We observe spontaneous microcracking of the Si during the stress-strain tests as a consequence of the formation of a small Cu clusters adjacent to the Si surface.
91 - B. Lazarovits , L. Szunyogh , 2005
We present a theoretical study of surface states close to 3d transition metal adatoms (Cr, Mn, Fe, Co, Ni and Cu) on a Cu(111) surface in terms of an embedding technique using the fully relativistic Korringa-Kohn-Rostoker method. For each of the adatoms we found resonances in the s-like states to be attributed to a localization of the surface states in the presence of an impurity. We studied the change of the s-like densities of states in the vicinity of the surface state band-edge due to scattering effects mediated via the adatoms d-orbitals. The obtained results show that a magnetic impurity causes spin-polarization of the surface states. In particular, the long-range oscillations of the spin-polarized s-like density of states around an Fe adatom are demonstrated.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا