No Arabic abstract
Photoluminescence (PL) intermittency is a ubiquitous phenomenon detrimentally reducing the temporal emission intensity stability of single colloidal quantum dots (CQDs) and the emission quantum yield of their ensembles. Despite efforts for blinking reduction via chemical engineering of the QD architecture and its environment, blinking still poses barriers to the application of QDs, particularly in single-particle tracking in biology or in single-photon sources. Here, we demonstrate the first deterministic all-optical suppression of quantum dot blinking using a compound technique of visible and mid-infrared (MIR) excitation. We show that moderate-field ultrafast MIR pulses (5.5 $mu$m, 150 fs) can switch the emission from a charged, low quantum yield grey trion state to the bright exciton state in CdSe/CdS core-shell quantum dots resulting in a significant reduction of the QD intensity flicker. Quantum-tunneling simulations suggest that the MIR fields remove the excess charge from trions with reduced emission quantum yield to restore higher brightness exciton emission. Our approach can be integrated with existing single-particle tracking or super-resolution microscopy techniques without any modification to the sample and translates to other emitters presenting charging-induced PL intermittencies, such as single-photon emissive defects in diamond and two-dimensional materials.
I propose a method for ultrafast switching of ferroelectric polarization using mid-infrared pulses. This involves selectively exciting the highest frequency $A_1$ phonon mode of a ferroelectric material with an intense mid-infrared pulse. Large amplitude oscillations of this mode provides a unidirectional force to the lattice such that it displaces along the lowest frequency $A_1$ phonon mode coordinate because of a nonlinear coupling of the type $g Q_{textrm{P}} Q_{textrm{IR}}^2$ between the two modes. First principles calculations show that this coupling is large in transition-metal oxide ferroelectrics, and the sign of the coupling is such that the lattice displaces in the switching direction. Furthermore, I find that the lowest frequency $A_1$ mode has a large $Q_{textrm{P}}^3$ order anharmonicity, which causes a discontinuous switch of electric polarization as the pump amplitude is continuously increased.
The photoluminescence intermittency (blinking) of quantum dots is interesting because it is an easily-measured quantum process whose transition statistics cannot be explained by Fermis Golden Rule. Commonly, the transition statistics are power-law distributed, implying that quantum dots possess at least trivial memories. By investigating the temporal correlations in the blinking data, we demonstrate with high statistical confidence that quantum dot blinking data has non-trivial memory, which we define to be statistical complexity greater than one. We show that this memory cannot be discovered using the transition distribution. We show by simulation that this memory does not arise from standard data manipulations. Finally, we conclude that at least three physical mechanisms can explain the measured non-trivial memory: 1) Storage of state information in the chemical structure of a quantum dot; 2) The existence of more than two intensity levels in a quantum dot; and 3) The overlap in the intensity distributions of the quantum dot states, which arises from fundamental photon statistics.
We study time series produced by the blinking quantum dots, by means of an aging experiment, and we examine the results of this experiment in the light of two distinct approaches to complexity, renewal and slow modulation. We find that the renewal approach fits the result of the aging experiment, while the slow modulation perspective does not. We make also an attempt at establishing the existence of an intermediate condition.
Photo-luminescence intermittency (blinking) in semiconductor nanocrystals (NCs), a phenomenon ubiquitous to single-emitters, is generally considered to be temporally random intensity fluctuations between bright (On) and dark (Off) states. However, individual quantum-dots (QDs) rarely exhibit such telegraphic signal, and yet, the vast majority of single-NC blinking data are analyzed using a single fixed threshold, which generates binary trajectories. Further, blinking dynamics can vary dramatically over NCs in the ensemble, and it is unclear whether the exponents (m) of single-particle On-/Off-time distributions (P(t)-On/Off), which are used to validate mechanistic models of blinking, are narrowly distributed or not. Here, we sub-classify an ensemble based on the emissivity of QDs, and subsequently compare the (sub)ensemble behaviors. To achieve this, we analyzed a large number (>1000) of intensity trajectories for a model system, Mn+2 doped ZnCdS QDs, which exhibits diverse blinking dynamics. An intensity histogram dependent thresholding method allowed us to construct distributions of relevant blinking parameters (such as m). Interestingly, we find that single QD P(t)-On/Off s follow either truncated power law or power law, and their relative proportion vary over sub-populations. Our results reveal a remarkable variation in m(On/Off) amongst as well as within sub-ensembles, which implies multiple blinking mechanisms being operational among various QDs. We further show that the m(On/Off) obtained via cumulative single-particle P(t)-On/Off is clearly distinct from the weighted mean value of all single-particle m(On/Off), an evidence for the lack of ergodicity. Thus, investigation and analyses of a large number of QDs, albeit for a limited time-span of few decades, is crucial to characterize possible blinking mechanisms and heterogeneity therein
We report a femtosecond mid-infrared study of the broadband low-energy response of individually separated (6,5) and (7,5) single-walled carbon nanotubes. Strong photoinduced absorption is observed around 200 meV, whose transition energy, oscillator strength, resonant chirality enhancement and dynamics manifest the observation of quasi-1D intra-excitonic transitions. A model of the nanotube 1s-2p cross section agrees well with the signal amplitudes. Our study further reveals saturation of the photoinduced absorption with increasing phase-space filling of the correlated e-h pairs.