Do you want to publish a course? Click here

Insights on heterogeneity in blinking mechanisms and non-ergodicity using sub-ensemble statistical analysis of single quantum-dots

117   0   0.0 ( 0 )
 Added by Arindam Chowdhury
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Photo-luminescence intermittency (blinking) in semiconductor nanocrystals (NCs), a phenomenon ubiquitous to single-emitters, is generally considered to be temporally random intensity fluctuations between bright (On) and dark (Off) states. However, individual quantum-dots (QDs) rarely exhibit such telegraphic signal, and yet, the vast majority of single-NC blinking data are analyzed using a single fixed threshold, which generates binary trajectories. Further, blinking dynamics can vary dramatically over NCs in the ensemble, and it is unclear whether the exponents (m) of single-particle On-/Off-time distributions (P(t)-On/Off), which are used to validate mechanistic models of blinking, are narrowly distributed or not. Here, we sub-classify an ensemble based on the emissivity of QDs, and subsequently compare the (sub)ensemble behaviors. To achieve this, we analyzed a large number (>1000) of intensity trajectories for a model system, Mn+2 doped ZnCdS QDs, which exhibits diverse blinking dynamics. An intensity histogram dependent thresholding method allowed us to construct distributions of relevant blinking parameters (such as m). Interestingly, we find that single QD P(t)-On/Off s follow either truncated power law or power law, and their relative proportion vary over sub-populations. Our results reveal a remarkable variation in m(On/Off) amongst as well as within sub-ensembles, which implies multiple blinking mechanisms being operational among various QDs. We further show that the m(On/Off) obtained via cumulative single-particle P(t)-On/Off is clearly distinct from the weighted mean value of all single-particle m(On/Off), an evidence for the lack of ergodicity. Thus, investigation and analyses of a large number of QDs, albeit for a limited time-span of few decades, is crucial to characterize possible blinking mechanisms and heterogeneity therein



rate research

Read More

A description of spin Faraday rotation, Kerr rotation and ellipticity signals for single- and multi-layer ensembles of singly charged quantum dots (QDs) is developed. The microscopic theory considers both the single pump-pulse excitation and the effect of a train of such pulses, which in the case of long resident-electron spin coherence time leads to a stationary distribution of the electron spin polarization. The calculations performed for single-color and two-color pump-probe setups show that the three experimental techniques: Faraday rotation, Kerr rotation and ellipticity measurements provide complementary information about an inhomogeneous ensemble of QDs. The microscopic theory developed for a three-dimensional ensemble of QDs is shown to agree with the phenomenological description of these effects. The typical time-dependent traces of pump-probe Faraday rotation, Kerr rotation and ellipticity signals are calculated for various experimental conditions.
Photoluminescence (PL) intermittency is a ubiquitous phenomenon detrimentally reducing the temporal emission intensity stability of single colloidal quantum dots (CQDs) and the emission quantum yield of their ensembles. Despite efforts for blinking reduction via chemical engineering of the QD architecture and its environment, blinking still poses barriers to the application of QDs, particularly in single-particle tracking in biology or in single-photon sources. Here, we demonstrate the first deterministic all-optical suppression of quantum dot blinking using a compound technique of visible and mid-infrared (MIR) excitation. We show that moderate-field ultrafast MIR pulses (5.5 $mu$m, 150 fs) can switch the emission from a charged, low quantum yield grey trion state to the bright exciton state in CdSe/CdS core-shell quantum dots resulting in a significant reduction of the QD intensity flicker. Quantum-tunneling simulations suggest that the MIR fields remove the excess charge from trions with reduced emission quantum yield to restore higher brightness exciton emission. Our approach can be integrated with existing single-particle tracking or super-resolution microscopy techniques without any modification to the sample and translates to other emitters presenting charging-induced PL intermittencies, such as single-photon emissive defects in diamond and two-dimensional materials.
The photoluminescence intermittency (blinking) of quantum dots is interesting because it is an easily-measured quantum process whose transition statistics cannot be explained by Fermis Golden Rule. Commonly, the transition statistics are power-law distributed, implying that quantum dots possess at least trivial memories. By investigating the temporal correlations in the blinking data, we demonstrate with high statistical confidence that quantum dot blinking data has non-trivial memory, which we define to be statistical complexity greater than one. We show that this memory cannot be discovered using the transition distribution. We show by simulation that this memory does not arise from standard data manipulations. Finally, we conclude that at least three physical mechanisms can explain the measured non-trivial memory: 1) Storage of state information in the chemical structure of a quantum dot; 2) The existence of more than two intensity levels in a quantum dot; and 3) The overlap in the intensity distributions of the quantum dot states, which arises from fundamental photon statistics.
The magnetic properties of a monolayer of Fe4 single molecule magnets grafted onto a Au (111) thin film have been investigated using low energy muon spin rotation. The properties of the monolayer are compared to bulk Fe4. We find that the magnetic properties in the monolayer are consistent with those measured in the bulk, strongly indicating that the single molecule magnet nature of Fe4 is preserved in a monolayer. However, differences in the temperature dependencies point to a small difference in their energy scale. We attribute this to a ~60% increase in the intramolecular magnetic interactions in the monolayer.
The operation of quantum dots at highest possible temperatures is desirable for many applications. Capacitance-voltage spectroscopy (C(V)-spectroscopy) measurements are an established instrument to analyze the electronic structure and energy levels of self-assembled quantum dots (QDs). We perform C(V) in the dark and C(V) under the influence of non-resonant illumination, probing exciton states up to $X^{4+}$ on InAs QDs embedded in a GaAs matrix for temperatures ranging from 2.5 K to 120 K. While a small shift in the charging spectra resonance is observed for the two pure spin degenerate electron s-state charging voltages with increasing temperature, a huge shift is visible for the electron-hole excitonic states resonance voltages. The $s_2$-peak moves to slightly higher, the $s_1$-peak to slightly lower charging voltages. In contrast, the excitonic states are surprisingly charged at much lower voltages upon increasing temperature. We derive a rate-model allowing to attribute and value different contributions to these shifts. Resonant tunnelling, state degeneracy and hole generation rate in combination with the Fermi distribution function turn out to be of great importance for the observed effects. The differences in the shifting behavior is connected to different equilibria schemes for the peaks; s-peaks arise when tunneling-in- and out-rates become equal, while excitonic peaks occur, when electron tunneling-in- and hole-generation rates are balanced.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا