Do you want to publish a course? Click here

Proposal for ultrafast switching of ferroelectrics using mid-infrared pulses

62   0   0.0 ( 0 )
 Added by Alaska Subedi
 Publication date 2015
  fields Physics
and research's language is English
 Authors Alaska Subedi




Ask ChatGPT about the research

I propose a method for ultrafast switching of ferroelectric polarization using mid-infrared pulses. This involves selectively exciting the highest frequency $A_1$ phonon mode of a ferroelectric material with an intense mid-infrared pulse. Large amplitude oscillations of this mode provides a unidirectional force to the lattice such that it displaces along the lowest frequency $A_1$ phonon mode coordinate because of a nonlinear coupling of the type $g Q_{textrm{P}} Q_{textrm{IR}}^2$ between the two modes. First principles calculations show that this coupling is large in transition-metal oxide ferroelectrics, and the sign of the coupling is such that the lattice displaces in the switching direction. Furthermore, I find that the lowest frequency $A_1$ mode has a large $Q_{textrm{P}}^3$ order anharmonicity, which causes a discontinuous switch of electric polarization as the pump amplitude is continuously increased.

rate research

Read More

Photoluminescence (PL) intermittency is a ubiquitous phenomenon detrimentally reducing the temporal emission intensity stability of single colloidal quantum dots (CQDs) and the emission quantum yield of their ensembles. Despite efforts for blinking reduction via chemical engineering of the QD architecture and its environment, blinking still poses barriers to the application of QDs, particularly in single-particle tracking in biology or in single-photon sources. Here, we demonstrate the first deterministic all-optical suppression of quantum dot blinking using a compound technique of visible and mid-infrared (MIR) excitation. We show that moderate-field ultrafast MIR pulses (5.5 $mu$m, 150 fs) can switch the emission from a charged, low quantum yield grey trion state to the bright exciton state in CdSe/CdS core-shell quantum dots resulting in a significant reduction of the QD intensity flicker. Quantum-tunneling simulations suggest that the MIR fields remove the excess charge from trions with reduced emission quantum yield to restore higher brightness exciton emission. Our approach can be integrated with existing single-particle tracking or super-resolution microscopy techniques without any modification to the sample and translates to other emitters presenting charging-induced PL intermittencies, such as single-photon emissive defects in diamond and two-dimensional materials.
A grand challenge underlies the entire field of topology-enabled quantum logic and information science: how to establish topological control principles driven by quantum coherence and understand the time-dependence of such periodic driving? Here we demonstrate a THz pulse-induced phase transition in Dirac materials that is periodically driven by vibrational coherence due to excitation of the lowest Raman-active mode. Above a critical field threshold, there emerges a long-lived metastable phase with unique Raman coherent phonon-assisted switching dynamics, absent for optical pumping. The switching also manifest itself by non-thermal spectral shape, relaxation slowing down near the Lifshitz transition where the critical Dirac point (DP) occurs, and diminishing signals at the same temperature that the Berry curvature induced Anomalous Hall Effect varnishes. These results, together with first-principles modeling, identify a mode-selective Raman coupling that drives the system from strong to weak topological insulators, STI to WTI, with a Dirac semimetal phase established at a critical atomic displacement controlled by the phonon pumping. Harnessing of vibrational coherence can be extended to steer symmetry-breaking transitions, i.e., Dirac to Weyl ones, with implications on THz topological quantum gate and error correction applications.
We report a femtosecond mid-infrared study of the broadband low-energy response of individually separated (6,5) and (7,5) single-walled carbon nanotubes. Strong photoinduced absorption is observed around 200 meV, whose transition energy, oscillator strength, resonant chirality enhancement and dynamics manifest the observation of quasi-1D intra-excitonic transitions. A model of the nanotube 1s-2p cross section agrees well with the signal amplitudes. Our study further reveals saturation of the photoinduced absorption with increasing phase-space filling of the correlated e-h pairs.
A central prospect of antiferromagnetic spintronics is to exploit magnetic properties that are unavailable with ferromagnets. However, this poses the challenge of accessing such properties for readout and control. To this end, light-induced manipulation of the transient ground state, e.g. by changing the magnetic anisotropy potential, opens promising pathways towards ultrafast deterministic control of antiferromagnetism. Here, we use this approach to trigger a $it{coherent}$ rotation of the entire long-range antiferromagnetic spin arrangement about a crystalline axis in $GdRh_2Si_2$ and demonstrate $it{deterministic}$ control of this rotation upon ultrafast optical excitation. Our observations can be explained by a displacive excitation of the Gd spins$$ local anisotropy potential by the optical excitation, allowing for a full description of this transient magnetic anisotropy potential.
134 - Alaska Subedi 2016
I show that a nonequilibrium paraelectric to ferroelectric transition can be induced using midinfrared pulses. This relies on a quartic $lQ_{textrm{l$_z$}}^2Q_{textrm{h$_x$}}^2$ coupling between the lowest ($Q_{textrm{l$_z$}}$) and highest ($Q_{textrm{h$_x$}}$) frequency infrared-active phonon modes of a paraelectric material. Density functional calculations show that the coupling constant $l$ is negative, which causes a softening of the $Q_{textrm{l$_z$}}$ mode when the $Q_{textrm{h$_x$}}$ mode is externally pumped. A rectification along the $Q_{textrm{l$_z$}}$ coordinate that stabilizes the nonequilibrium ferroelectric state occurs only above a critical threshold for the electric field of the pump pulse, demonstrating that this is a nonperturbative phenomenon. A first principles calculation of the coupling between light and the $Q_{textrm{h$_x$}}$ mode shows that ferroelectricity can be induced in the representative case of strained KTaO$_3$ by a midinfrared pulse with a peak electric field of 17 MV cm$^{-1}$ and duration of 2 ps. Furthermore, other odd-order nonlinear couplings make it possible to arbitrarily switch off the light-induced ferroelectric state, making this technique feasible for all-optic devices.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا