No Arabic abstract
We study time series produced by the blinking quantum dots, by means of an aging experiment, and we examine the results of this experiment in the light of two distinct approaches to complexity, renewal and slow modulation. We find that the renewal approach fits the result of the aging experiment, while the slow modulation perspective does not. We make also an attempt at establishing the existence of an intermediate condition.
We consider two different proposals to generate a time series with the same non-Poisson distribution of waiting times, to which we refer to as renewal and modulation. We show that, in spite of the apparent statistical equivalence, the two time series generate different physical effects. Renewal generates aging and anomalous scaling, while modulation yields no aging and either ordinary or anomalous diffusion, according to the prescription used for its generation. We argue, in fact, that the physical realization of modulation involves critical events, responsible for scaling. In conclusion, modulation rather than ruling out the action of critical events, sets the challenge for their identification.
Photoluminescence (PL) intermittency is a ubiquitous phenomenon detrimentally reducing the temporal emission intensity stability of single colloidal quantum dots (CQDs) and the emission quantum yield of their ensembles. Despite efforts for blinking reduction via chemical engineering of the QD architecture and its environment, blinking still poses barriers to the application of QDs, particularly in single-particle tracking in biology or in single-photon sources. Here, we demonstrate the first deterministic all-optical suppression of quantum dot blinking using a compound technique of visible and mid-infrared (MIR) excitation. We show that moderate-field ultrafast MIR pulses (5.5 $mu$m, 150 fs) can switch the emission from a charged, low quantum yield grey trion state to the bright exciton state in CdSe/CdS core-shell quantum dots resulting in a significant reduction of the QD intensity flicker. Quantum-tunneling simulations suggest that the MIR fields remove the excess charge from trions with reduced emission quantum yield to restore higher brightness exciton emission. Our approach can be integrated with existing single-particle tracking or super-resolution microscopy techniques without any modification to the sample and translates to other emitters presenting charging-induced PL intermittencies, such as single-photon emissive defects in diamond and two-dimensional materials.
We investigate the statistics of the first detected passage time of a quantum walk. The postulates of quantum theory, in particular the collapse of the wave function upon measurement, reveal an intimate connection between the wave function of a process free of measurements, i.e. the solution of the Schrodinger equation, and the statistics of first detection events on a site. For stroboscopic measurements a quantum renewal equation yields basic properties of quantum walks. For example, for a tight binding model on a ring we discover critical sampling times, diverging quantities such as the mean time for first detection, and an optimal detection rate. For a quantum walk on an infinite line the probability of first detection decays like $(mbox{time})^{-3}$ with a superimposed oscillation, critical behavior for a specific choice of sampling time, and vanishing amplitude when the sampling time approaches zero due to the quantum Zeno effect.
Abrupt fluorescence intermittency or blinking is long recognized to be characteristic of single nano-emitters. Extended quantum-confined nanostructures also undergo spatially heterogeneous blinking, however, there is no such precedence in dimensionally unconfined (bulk) materials. Here, we report multi-level blinking of entire individual organo-lead bromide perovskite micro-crystals (volume 0.1-3 micron-cuble) under ambient conditions. Extremely high spatiotemporal correlation (>0.9) in intra-crystal emission intensity fluctuations signifies effective communication amongst photogenerated carriers at distal locations (up to ~4 microns) within each crystal. Fused polycrystalline grains also exhibit this intriguing phenomenon, which is rationalized by correlated and efficient migration of carriers to a few transient non-radiative traps, the nature and population of which determine blinking propensity. Observation of spatiotemporally correlated emission intermittency in bulk semiconductor crystals opens up the possibility to design novel devices involving long range (mesoscopic) electronic communication.
The photoluminescence intermittency (blinking) of quantum dots is interesting because it is an easily-measured quantum process whose transition statistics cannot be explained by Fermis Golden Rule. Commonly, the transition statistics are power-law distributed, implying that quantum dots possess at least trivial memories. By investigating the temporal correlations in the blinking data, we demonstrate with high statistical confidence that quantum dot blinking data has non-trivial memory, which we define to be statistical complexity greater than one. We show that this memory cannot be discovered using the transition distribution. We show by simulation that this memory does not arise from standard data manipulations. Finally, we conclude that at least three physical mechanisms can explain the measured non-trivial memory: 1) Storage of state information in the chemical structure of a quantum dot; 2) The existence of more than two intensity levels in a quantum dot; and 3) The overlap in the intensity distributions of the quantum dot states, which arises from fundamental photon statistics.