Do you want to publish a course? Click here

TRECVID 2020: A comprehensive campaign for evaluating video retrieval tasks across multiple application domains

61   0   0.0 ( 0 )
 Added by Asad Anwar Butt
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

The TREC Video Retrieval Evaluation (TRECVID) is a TREC-style video analysis and retrieval evaluation with the goal of promoting progress in research and development of content-based exploitation and retrieval of information from digital video via open, metrics-based evaluation. Over the last twenty years this effort has yielded a better understanding of how systems can effectively accomplish such processing and how one can reliably benchmark their performance. TRECVID has been funded by NIST (National Institute of Standards and Technology) and other US government agencies. In addition, many organizations and individuals worldwide contribute significant time and effort. TRECVID 2020 represented a continuation of four tasks and the addition of two new tasks. In total, 29 teams from various research organizations worldwide completed one or more of the following six tasks: 1. Ad-hoc Video Search (AVS), 2. Instance Search (INS), 3. Disaster Scene Description and Indexing (DSDI), 4. Video to Text Description (VTT), 5. Activities in Extended Video (ActEV), 6. Video Summarization (VSUM). This paper is an introduction to the evaluation framework, tasks, data, and measures used in the evaluation campaign.



rate research

Read More

The TREC Video Retrieval Evaluation (TRECVID) 2019 was a TREC-style video analysis and retrieval evaluation, the goal of which remains to promote progress in research and development of content-based exploitation and retrieval of information from digital video via open, metrics-based evaluation. Over the last nineteen years this effort has yielded a better understanding of how systems can effectively accomplish such processing and how one can reliably benchmark their performance. TRECVID has been funded by NIST (National Institute of Standards and Technology) and other US government agencies. In addition, many organizations and individuals worldwide contribute significant time and effort. TRECVID 2019 represented a continuation of four tasks from TRECVID 2018. In total, 27 teams from various research organizations worldwide completed one or more of the following four tasks: 1. Ad-hoc Video Search (AVS) 2. Instance Search (INS) 3. Activities in Extended Video (ActEV) 4. Video to Text Description (VTT) This paper is an introduction to the evaluation framework, tasks, data, and measures used in the workshop.
Recent works have proven that many relevant visual tasks are closely related one to another. Yet, this connection is seldom deployed in practice due to the lack of practical methodologies to transfer learned concepts across different training processes. In this work, we introduce a novel adaptation framework that can operate across both task and domains. Our framework learns to transfer knowledge across tasks in a fully supervised domain (e.g., synthetic data) and use this knowledge on a different domain where we have only partial supervision (e.g., real data). Our proposal is complementary to existing domain adaptation techniques and extends them to cross tasks scenarios providing additional performance gains. We prove the effectiveness of our framework across two challenging tasks (i.e., monocular depth estimation and semantic segmentation) and four different domains (Synthia, Carla, Kitti, and Cityscapes).
Beyond the complexity of CNNs that require training on large annotated datasets, the domain shift between design and operational data has limited the adoption of CNNs in many real-world applications. For instance, in person re-identification, videos are captured over a distributed set of cameras with non-overlapping viewpoints. The shift between the source (e.g. lab setting) and target (e.g. cameras) domains may lead to a significant decline in recognition accuracy. Additionally, state-of-the-art CNNs may not be suitable for such real-time applications given their computational requirements. Although several techniques have recently been proposed to address domain shift problems through unsupervised domain adaptation (UDA), or to accelerate/compress CNNs through knowledge distillation (KD), we seek to simultaneously adapt and compress CNNs to generalize well across multiple target domains. In this paper, we propose a progressive KD approach for unsupervised single-target DA (STDA) and multi-target DA (MTDA) of CNNs. Our method for KD-STDA adapts a CNN to a single target domain by distilling from a larger teacher CNN, trained on both target and source domain data in order to maintain its consistency with a common representation. Our proposed approach is compared against state-of-the-art methods for compression and STDA of CNNs on the Office31 and ImageClef-DA image classification datasets. It is also compared against state-of-the-art methods for MTDA on Digits, Office31, and OfficeHome. In both settings -- KD-STDA and KD-MTDA -- results indicate that our approach can achieve the highest level of accuracy across target domains, while requiring a comparable or lower CNN complexity.
Recent reports suggest that a generic supervised deep CNN model trained on a large-scale dataset reduces, but does not remove, dataset bias. Fine-tuning deep models in a new domain can require a significant amount of labeled data, which for many applications is simply not available. We propose a new CNN architecture to exploit unlabeled and sparsely labeled target domain data. Our approach simultaneously optimizes for domain invariance to facilitate domain transfer and uses a soft label distribution matching loss to transfer information between tasks. Our proposed adaptation method offers empirical performance which exceeds previously published results on two standard benchmark visual domain adaptation tasks, evaluated across supervised and semi-supervised adaptation settings.
226 - Wenhao Yu , Lingfei Wu , Yu Deng 2020
Building automatic technical support system is an important yet challenge task. Conceptually, to answer a user question on a technical forum, a human expert has to first retrieve relevant documents, and then read them carefully to identify the answer snippet. Despite huge success the researchers have achieved in coping with general domain question answering (QA), much less attentions have been paid for investigating technical QA. Specifically, existing methods suffer from several unique challenges (i) the question and answer rarely overlaps substantially and (ii) very limited data size. In this paper, we propose a novel framework of deep transfer learning to effectively address technical QA across tasks and domains. To this end, we present an adjustable joint learning approach for document retrieval and reading comprehension tasks. Our experiments on the TechQA demonstrates superior performance compared with state-of-the-art methods.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا