No Arabic abstract
Generative modeling has evolved to a notable field of machine learning. Deep polynomial neural networks (PNNs) have demonstrated impressive results in unsupervised image generation, where the task is to map an input vector (i.e., noise) to a synthesized image. However, the success of PNNs has not been replicated in conditional generation tasks, such as super-resolution. Existing PNNs focus on single-variable polynomial expansions which do not fare well to two-variable inputs, i.e., the noise variable and the conditional variable. In this work, we introduce a general framework, called CoPE, that enables a polynomial expansion of two input variables and captures their auto- and cross-correlations. We exhibit how CoPE can be trivially augmented to accept an arbitrary number of input variables. CoPE is evaluated in five tasks (class-conditional generation, inverse problems, edges-to-image translation, image-to-image translation, attribute-guided generation) involving eight datasets. The thorough evaluation suggests that CoPE can be useful for tackling diverse conditional generation tasks.
Humans can only interact with part of the surrounding environment due to biological restrictions. Therefore, we learn to reason the spatial relationships across a series of observations to piece together the surrounding environment. Inspired by such behavior and the fact that machines also have computational constraints, we propose underline{CO}nditional underline{CO}ordinate GAN (COCO-GAN) of which the generator generates images by parts based on their spatial coordinates as the condition. On the other hand, the discriminator learns to justify realism across multiple assembled patches by global coherence, local appearance, and edge-crossing continuity. Despite the full images are never generated during training, we show that COCO-GAN can produce textbf{state-of-the-art-quality} full images during inference. We further demonstrate a variety of novel applications enabled by teaching the network to be aware of coordinates. First, we perform extrapolation to the learned coordinate manifold and generate off-the-boundary patches. Combining with the originally generated full image, COCO-GAN can produce images that are larger than training samples, which we called beyond-boundary generation. We then showcase panorama generation within a cylindrical coordinate system that inherently preserves horizontally cyclic topology. On the computation side, COCO-GAN has a built-in divide-and-conquer paradigm that reduces memory requisition during training and inference, provides high-parallelism, and can generate parts of images on-demand.
In this paper, we treat the image generation task using an autoencoder, a representative latent model. Unlike many studies regularizing the latent variables distribution by assuming a manually specified prior, we approach the image generation task using an autoencoder by directly estimating the latent distribution. To this end, we introduce latent density estimator which captures latent distribution explicitly and propose its structure. Through experiments, we show that our generative model generates images with the improved visual quality compared to previous autoencoder-based generative models.
Real-world settings often do not allow acquisition of high-resolution volumetric images for accurate morphological assessment and diagnostic. In clinical practice it is frequently common to acquire only sparse data (e.g. individual slices) for initial diagnostic decision making. Thereby, physicians rely on their prior knowledge (or mental maps) of the human anatomy to extrapolate the underlying 3D information. Accurate mental maps require years of anatomy training, which in the first instance relies on normative learning, i.e. excluding pathology. In this paper, we leverage Bayesian Deep Learning and environment mapping to generate full volumetric anatomy representations from none to a small, sparse set of slices. We evaluate proof of concept implementations based on Generative Query Networks (GQN) and Conditional BRUNO using abdominal CT and brain MRI as well as in a clinical application involving sparse, motion-corrupted MR acquisition for fetal imaging. Our approach allows to reconstruct 3D volumes from 1 to 4 tomographic slices, with a SSIM of 0.7+ and cross-correlation of 0.8+ compared to the 3D ground truth.
We introduce MosAIc, an interactive web app that allows users to find pairs of semantically related artworks that span different cultures, media, and millennia. To create this application, we introduce Conditional Image Retrieval (CIR) which combines visual similarity search with user supplied filters or conditions. This technique allows one to find pairs of similar images that span distinct subsets of the image corpus. We provide a generic way to adapt existing image retrieval data-structures to this new domain and provide theoretical bounds on our approachs efficiency. To quantify the performance of CIR systems, we introduce new datasets for evaluating CIR methods and show that CIR performs non-parametric style transfer. Finally, we demonstrate that our CIR data-structures can identify blind spots in Generative Adversarial Networks (GAN) where they fail to properly model the true data distribution.
Deep generative models are becoming a cornerstone of modern machine learning. Recent work on conditional generative adversarial networks has shown that learning complex, high-dimensional distributions over natural images is within reach. While the latest models are able to generate high-fidelity, diverse natural images at high resolution, they rely on a vast quantity of labeled data. In this work we demonstrate how one can benefit from recent work on self- and semi-supervised learning to outperform the state of the art on both unsupervised ImageNet synthesis, as well as in the conditional setting. In particular, the proposed approach is able to match the sample quality (as measured by FID) of the current state-of-the-art conditional model BigGAN on ImageNet using only 10% of the labels and outperform it using 20% of the labels.