Do you want to publish a course? Click here

High-Fidelity Image Generation With Fewer Labels

93   0   0.0 ( 0 )
 Added by Michael Tschannen
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Deep generative models are becoming a cornerstone of modern machine learning. Recent work on conditional generative adversarial networks has shown that learning complex, high-dimensional distributions over natural images is within reach. While the latest models are able to generate high-fidelity, diverse natural images at high resolution, they rely on a vast quantity of labeled data. In this work we demonstrate how one can benefit from recent work on self- and semi-supervised learning to outperform the state of the art on both unsupervised ImageNet synthesis, as well as in the conditional setting. In particular, the proposed approach is able to match the sample quality (as measured by FID) of the current state-of-the-art conditional model BigGAN on ImageNet using only 10% of the labels and outperform it using 20% of the labels.



rate research

Read More

We explore the use of Vector Quantized Variational AutoEncoder (VQ-VAE) models for large scale image generation. To this end, we scale and enhance the autoregressive priors used in VQ-VAE to generate synthetic samples of much higher coherence and fidelity than possible before. We use simple feed-forward encoder and decoder networks, making our model an attractive candidate for applications where the encoding and/or decoding speed is critical. Additionally, VQ-VAE requires sampling an autoregressive model only in the compressed latent space, which is an order of magnitude faster than sampling in the pixel space, especially for large images. We demonstrate that a multi-scale hierarchical organization of VQ-VAE, augmented with powerful priors over the latent codes, is able to generate samples with quality that rivals that of state of the art Generative Adversarial Networks on multifaceted datasets such as ImageNet, while not suffering from GANs known shortcomings such as mode collapse and lack of diversity.
In this paper, we treat the image generation task using an autoencoder, a representative latent model. Unlike many studies regularizing the latent variables distribution by assuming a manually specified prior, we approach the image generation task using an autoencoder by directly estimating the latent distribution. To this end, we introduce latent density estimator which captures latent distribution explicitly and propose its structure. Through experiments, we show that our generative model generates images with the improved visual quality compared to previous autoencoder-based generative models.
We extensively study how to combine Generative Adversarial Networks and learned compression to obtain a state-of-the-art generative lossy compression system. In particular, we investigate normalization layers, generator and discriminator architectures, training strategies, as well as perceptual losses. In contrast to previous work, i) we obtain visually pleasing reconstructions that are perceptually similar to the input, ii) we operate in a broad range of bitrates, and iii) our approach can be applied to high-resolution images. We bridge the gap between rate-distortion-perception theory and practice by evaluating our approach both quantitatively with various perceptual metrics, and with a user study. The study shows that our method is preferred to previous approaches even if they use more than 2x the bitrate.
111 - Ankit Dhall 2020
Image classification has been studied extensively but there has been limited work in the direction of using non-conventional, external guidance other than traditional image-label pairs to train such models. In this thesis we present a set of methods to leverage information about the semantic hierarchy induced by class labels. In the first part of the thesis, we inject label-hierarchy knowledge to an arbitrary classifier and empirically show that availability of such external semantic information in conjunction with the visual semantics from images boosts overall performance. Taking a step further in this direction, we model more explicitly the label-label and label-image interactions by using order-preserving embedding-based models, prevalent in natural language, and tailor them to the domain of computer vision to perform image classification. Although, contrasting in nature, both the CNN-classifiers injected with hierarchical information, and the embedding-based models outperform a hierarchy-agnostic model on the newly presented, real-world ETH Entomological Collection image dataset https://www.research-collection.ethz.ch/handle/20.500.11850/365379.
Learning with noisy labels is an important and challenging task for training accurate deep neural networks. Some commonly-used loss functions, such as Cross Entropy (CE), suffer from severe overfitting to noisy labels. Robust loss functions that satisfy the symmetric condition were tailored to remedy this problem, which however encounter the underfitting effect. In this paper, we theoretically prove that textbf{any loss can be made robust to noisy labels} by restricting the network output to the set of permutations over a fixed vector. When the fixed vector is one-hot, we only need to constrain the output to be one-hot, which however produces zero gradients almost everywhere and thus makes gradient-based optimization difficult. In this work, we introduce the sparse regularization strategy to approximate the one-hot constraint, which is composed of network output sharpening operation that enforces the output distribution of a network to be sharp and the $ell_p$-norm ($ple 1$) regularization that promotes the network output to be sparse. This simple approach guarantees the robustness of arbitrary loss functions while not hindering the fitting ability. Experimental results demonstrate that our method can significantly improve the performance of commonly-used loss functions in the presence of noisy labels and class imbalance, and outperform the state-of-the-art methods. The code is available at https://github.com/hitcszx/lnl_sr.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا