Do you want to publish a course? Click here

MosAIc: Finding Artistic Connections across Culture with Conditional Image Retrieval

69   0   0.0 ( 0 )
 Added by Mark Hamilton
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

We introduce MosAIc, an interactive web app that allows users to find pairs of semantically related artworks that span different cultures, media, and millennia. To create this application, we introduce Conditional Image Retrieval (CIR) which combines visual similarity search with user supplied filters or conditions. This technique allows one to find pairs of similar images that span distinct subsets of the image corpus. We provide a generic way to adapt existing image retrieval data-structures to this new domain and provide theoretical bounds on our approachs efficiency. To quantify the performance of CIR systems, we introduce new datasets for evaluating CIR methods and show that CIR performs non-parametric style transfer. Finally, we demonstrate that our CIR data-structures can identify blind spots in Generative Adversarial Networks (GAN) where they fail to properly model the true data distribution.

rate research

Read More

We study the robustness of image classifiers to temporal perturbations derived from videos. As part of this study, we construct two datasets, ImageNet-Vid-Robust and YTBB-Robust , containing a total 57,897 images grouped into 3,139 sets of perceptually similar images. Our datasets were derived from ImageNet-Vid and Youtube-BB respectively and thoroughly re-annotated by human experts for image similarity. We evaluate a diverse array of classifiers pre-trained on ImageNet and show a median classification accuracy drop of 16 and 10 on our two datasets. Additionally, we evaluate three detection models and show that natural perturbations induce both classification as well as localization errors, leading to a median drop in detection mAP of 14 points. Our analysis demonstrates that perturbations occurring naturally in videos pose a substantial and realistic challenge to deploying convolutional neural networks in environments that require both reliable and low-latency predictions
Generative modeling has evolved to a notable field of machine learning. Deep polynomial neural networks (PNNs) have demonstrated impressive results in unsupervised image generation, where the task is to map an input vector (i.e., noise) to a synthesized image. However, the success of PNNs has not been replicated in conditional generation tasks, such as super-resolution. Existing PNNs focus on single-variable polynomial expansions which do not fare well to two-variable inputs, i.e., the noise variable and the conditional variable. In this work, we introduce a general framework, called CoPE, that enables a polynomial expansion of two input variables and captures their auto- and cross-correlations. We exhibit how CoPE can be trivially augmented to accept an arbitrary number of input variables. CoPE is evaluated in five tasks (class-conditional generation, inverse problems, edges-to-image translation, image-to-image translation, attribute-guided generation) involving eight datasets. The thorough evaluation suggests that CoPE can be useful for tackling diverse conditional generation tasks.
Due to its low storage cost and fast query speed, hashing has been widely used in large-scale image retrieval tasks. Hash bucket search returns data points within a given Hamming radius to each query, which can enable search at a constant or sub-linear time cost. However, existing hashing methods cannot achieve satisfactory retrieval performance for hash bucket search in complex scenarios, since they learn only one hash code for each image. More specifically, by using one hash code to represent one image, existing methods might fail to put similar image pairs to the buckets with a small Hamming distance to the query when the semantic information of images is complex. As a result, a large number of hash buckets need to be visited for retrieving similar images, based on the learned codes. This will deteriorate the efficiency of hash bucket search. In this paper, we propose a novel hashing framework, called multiple code hashing (MCH), to improve the performance of hash bucket search. The main idea of MCH is to learn multiple hash codes for each image, with each code representing a different region of the image. Furthermore, we propose a deep reinforcement learning algorithm to learn the parameters in MCH. To the best of our knowledge, this is the first work that proposes to learn multiple hash codes for each image in image retrieval. Experiments demonstrate that MCH can achieve a significant improvement in hash bucket search, compared with existing methods that learn only one hash code for each image.
Polygonal meshes provide an efficient representation for 3D shapes. They explicitly capture both shape surface and topology, and leverage non-uniformity to represent large flat regions as well as sharp, intricate features. This non-uniformity and irregularity, however, inhibits mesh analysis efforts using neural networks that combine convolution and pooling operations. In this paper, we utilize the unique properties of the mesh for a direct analysis of 3D shapes using MeshCNN, a convolutional neural network designed specifically for triangular meshes. Analogous to classic CNNs, MeshCNN combines specialized convolution and pooling layers that operate on the mesh edges, by leveraging their intrinsic geodesic connections. Convolutions are applied on edges and the four edges of their incident triangles, and pooling is applied via an edge collapse operation that retains surface topology, thereby, generating new mesh connectivity for the subsequent convolutions. MeshCNN learns which edges to collapse, thus forming a task-driven process where the network exposes and expands the important features while discarding the redundant ones. We demonstrate the effectiveness of our task-driven pooling on various learning tasks applied to 3D meshes.
Image retrieval based on deep convolutional features has demonstrated state-of-the-art performance in popular benchmarks. In this paper, we present a unified solution to address deep convolutional feature aggregation and image re-ranking by simulating the dynamics of heat diffusion. A distinctive problem in image retrieval is that repetitive or emph{bursty} features tend to dominate final image representations, resulting in representations less distinguishable. We show that by considering each deep feature as a heat source, our unsupervised aggregation method is able to avoid over-representation of emph{bursty} features. We additionally provide a practical solution for the proposed aggregation method and further show the efficiency of our method in experimental evaluation. Inspired by the aforementioned deep feature aggregation method, we also propose a method to re-rank a number of top ranked images for a given query image by considering the query as the heat source. Finally, we extensively evaluate the proposed approach with pre-trained and fine-tuned deep networks on common public benchmarks and show superior performance compared to previous work.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا