No Arabic abstract
The task of long-form question answering (LFQA) involves retrieving documents relevant to a given question and using them to generate a paragraph-length answer. While many models have recently been proposed for LFQA, we show in this paper that the task formulation raises fundamental challenges regarding evaluation and dataset creation that currently preclude meaningful modeling progress. To demonstrate these challenges, we first design a new system that relies on sparse attention and contrastive retriever learning to achieve state-of-the-art performance on the ELI5 LFQA dataset. While our system tops the public leaderboard, a detailed analysis reveals several troubling trends: (1) our systems generated answers are not actually grounded in the documents that it retrieves; (2) ELI5 contains significant train / validation overlap, as at least 81% of ELI5 validation questions occur in paraphrased form in the training set; (3) ROUGE-L is not an informative metric of generated answer quality and can be easily gamed; and (4) human evaluations used for other text generation tasks are unreliable for LFQA. We offer suggestions to mitigate each of these issues, which we hope will lead to more rigorous LFQA research and meaningful progress in the future.
Existing table question answering datasets contain abundant factual questions that primarily evaluate the query and schema comprehension capability of a system, but they fail to include questions that require complex reasoning and integration of information due to the constraint of the associated short-form answers. To address these issues and to demonstrate the full challenge of table question answering, we introduce FeTaQA, a new dataset with 10K Wikipedia-based {table, question, free-form answer, supporting table cells} pairs. FeTaQA yields a more challenging table question answering setting because it requires generating free-form text answers after retrieval, inference, and integration of multiple discontinuous facts from a structured knowledge source. Unlike datasets of generative QA over text in which answers are prevalent with copies of short text spans from the source, answers in our dataset are human-generated explanations involving entities and their high-level relations. We provide two benchmark methods for the proposed task: a pipeline method based on semantic-parsing-based QA systems and an end-to-end method based on large pretrained text generation models, and show that FeTaQA poses a challenge for both methods.
Knowledge-dependent tasks typically use two sources of knowledge: parametric, learned at training time, and contextual, given as a passage at inference time. To understand how models use these sources together, we formalize the problem of knowledge conflicts, where the contextual information contradicts the learned information. Analyzing the behaviour of popular models, we measure their over-reliance on memorized information (the cause of hallucinations), and uncover important factors that exacerbate this behaviour. Lastly, we propose a simple method to mitigate over-reliance on parametric knowledge, which minimizes hallucination, and improves out-of-distribution generalization by 4%-7%. Our findings demonstrate the importance for practitioners to evaluate model tendency to hallucinate rather than read, and show that our mitigation strategy encourages generalization to evolving information (i.e., time-dependent queries). To encourage these practices, we have released our framework for generating knowledge conflicts.
Multimodal question answering tasks can be used as proxy tasks to study systems that can perceive and reason about the world. Answering questions about different types of input modalities stresses different aspects of reasoning such as visual reasoning, reading comprehension, story understanding, or navigation. In this paper, we use the task of Audio Question Answering (AQA) to study the temporal reasoning abilities of machine learning models. To this end, we introduce the Diagnostic Audio Question Answering (DAQA) dataset comprising audio sequences of natural sound events and programmatically generated questions and answers that probe various aspects of temporal reasoning. We adapt several recent state-of-the-art methods for visual question answering to the AQA task, and use DAQA to demonstrate that they perform poorly on questions that require in-depth temporal reasoning. Finally, we propose a new model, Multiple Auxiliary Controllers for Linear Modulation (MALiMo) that extends the recent Feature-wise Linear Modulation (FiLM) model and significantly improves its temporal reasoning capabilities. We envisage DAQA to foster research on AQA and temporal reasoning and MALiMo a step towards models for AQA.
Recent success of deep learning models for the task of extractive Question Answering (QA) is hinged on the availability of large annotated corpora. However, large domain specific annotated corpora are limited and expensive to construct. In this work, we envision a system where the end user specifies a set of base documents and only a few labelled examples. Our system exploits the document structure to create cloze-style questions from these base documents; pre-trains a powerful neural network on the cloze style questions; and further fine-tunes the model on the labeled examples. We evaluate our proposed system across three diverse datasets from different domains, and find it to be highly effective with very little labeled data. We attain more than 50% F1 score on SQuAD and TriviaQA with less than a thousand labelled examples. We are also releasing a set of 3.2M cloze-style questions for practitioners to use while building QA systems.
The question answering system can answer questions from various fields and forms with deep neural networks, but it still lacks effective ways when facing multiple evidences. We introduce a new model called SRQA, which means Synthetic Reader for Factoid Question Answering. This model enhances the question answering system in the multi-document scenario from three aspects: model structure, optimization goal, and training method, corresponding to Multilayer Attention (MA), Cross Evidence (CE), and Adversarial Training (AT) respectively. First, we propose a multilayer attention network to obtain a better representation of the evidences. The multilayer attention mechanism conducts interaction between the question and the passage within each layer, making the token representation of evidences in each layer takes the requirement of the question into account. Second, we design a cross evidence strategy to choose the answer span within more evidences. We improve the optimization goal, considering all the answers locations in multiple evidences as training targets, which leads the model to reason among multiple evidences. Third, adversarial training is employed to high-level variables besides the word embedding in our model. A new normalization method is also proposed for adversarial perturbations so that we can jointly add perturbations to several target variables. As an effective regularization method, adversarial training enhances the models ability to process noisy data. Combining these three strategies, we enhance the contextual representation and locating ability of our model, which could synthetically extract the answer span from several evidences. We perform SRQA on the WebQA dataset, and experiments show that our model outperforms the state-of-the-art models (the best fuzzy score of our model is up to 78.56%, with an improvement of about 2%).