Do you want to publish a course? Click here

Temporal Reasoning via Audio Question Answering

91   0   0.0 ( 0 )
 Added by Haytham Fayek
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Multimodal question answering tasks can be used as proxy tasks to study systems that can perceive and reason about the world. Answering questions about different types of input modalities stresses different aspects of reasoning such as visual reasoning, reading comprehension, story understanding, or navigation. In this paper, we use the task of Audio Question Answering (AQA) to study the temporal reasoning abilities of machine learning models. To this end, we introduce the Diagnostic Audio Question Answering (DAQA) dataset comprising audio sequences of natural sound events and programmatically generated questions and answers that probe various aspects of temporal reasoning. We adapt several recent state-of-the-art methods for visual question answering to the AQA task, and use DAQA to demonstrate that they perform poorly on questions that require in-depth temporal reasoning. Finally, we propose a new model, Multiple Auxiliary Controllers for Linear Modulation (MALiMo) that extends the recent Feature-wise Linear Modulation (FiLM) model and significantly improves its temporal reasoning capabilities. We envisage DAQA to foster research on AQA and temporal reasoning and MALiMo a step towards models for AQA.



rate research

Read More

Existing work on augmenting question answering (QA) models with external knowledge (e.g., knowledge graphs) either struggle to model multi-hop relations efficiently, or lack transparency into the models prediction rationale. In this paper, we propose a novel knowledge-aware approach that equips pre-trained language models (PTLMs) with a multi-hop relational reasoning module, named multi-hop graph relation network (MHGRN). It performs multi-hop, multi-relational reasoning over subgraphs extracted from external knowledge graphs. The proposed reasoning module unifies path-based reasoning methods and graph neural networks to achieve better interpretability and scalability. We also empirically show its effectiveness and scalability on CommonsenseQA and OpenbookQA datasets, and interpret its behaviors with case studies.
201 - Daniel Khashabi 2019
Natural language understanding (NLU) of text is a fundamental challenge in AI, and it has received significant attention throughout the history of NLP research. This primary goal has been studied under different tasks, such as Question Answering (QA) and Textual Entailment (TE). In this thesis, we investigate the NLU problem through the QA task and focus on the aspects that make it a challenge for the current state-of-the-art technology. This thesis is organized into three main parts: In the first part, we explore multiple formalisms to improve existing machine comprehension systems. We propose a formulation for abductive reasoning in natural language and show its effectiveness, especially in domains with limited training data. Additionally, to help reasoning systems cope with irrelevant or redundant information, we create a supervised approach to learn and detect the essential terms in questions. In the second part, we propose two new challenge datasets. In particular, we create two datasets of natural language questions where (i) the first one requires reasoning over multiple sentences; (ii) the second one requires temporal common sense reasoning. We hope that the two proposed datasets will motivate the field to address more complex problems. In the final part, we present the first formal framework for multi-step reasoning algorithms, in the presence of a few important properties of language use, such as incompleteness, ambiguity, etc. We apply this framework to prove fundamental limitations for reasoning algorithms. These theoretical results provide extra intuition into the existing empirical evidence in the field.
We propose a novel method for exploiting the semantic structure of text to answer multiple-choice questions. The approach is especially suitable for domains that require reasoning over a diverse set of linguistic constructs but have limited training data. To address these challenges, we present the first system, to the best of our knowledge, that reasons over a wide range of semantic abstractions of the text, which are derived using off-the-shelf, general-purpose, pre-trained natural language modules such as semantic role labelers, coreference resolvers, and dependency parsers. Representing multiple abstractions as a family of graphs, we translate question answering (QA) into a search for an optimal subgraph that satisfies certain global and local properties. This formulation generalizes several prior structured QA systems. Our system, SEMANTICILP, demonstrates strong performance on two domains simultaneously. In particular, on a collection of challenging science QA datasets, it outperforms various state-of-the-art approaches, including neural models, broad coverage information retrieval, and specialized techniques using structured knowledge bases, by 2%-6%.
166 - Yufei Feng , Mo Yu , Wenhan Xiong 2020
We propose the new problem of learning to recover reasoning chains from weakly supervised signals, i.e., the question-answer pairs. We propose a cooperative game approach to deal with this problem, in which how the evidence passages are selected and how the selected passages are connected are handled by two models that cooperate to select the most confident chains from a large set of candidates (from distant supervision). For evaluation, we created benchmarks based on two multi-hop QA datasets, HotpotQA and MedHop; and hand-labeled reasoning chains for the latter. The experimental results demonstrate the effectiveness of our proposed approach.
Although deep neural networks have achieved tremendous success for question answering (QA), they are still suffering from heavy computational and energy cost for real product deployment. Further, existing QA systems are bottlenecked by the encoding time of real-time questions with neural networks, thus suffering from detectable latency in deployment for large-volume traffic. To reduce the computational cost and accelerate real-time question answering (RTQA) for practical usage, we propose to remove all the neural networks from online QA systems, and present Ocean-Q (an Ocean of Questions), which introduces a new question generation (QG) model to generate a large pool of QA pairs offline, then in real time matches an input question with the candidate QA pool to predict the answer without question encoding. Ocean-Q can be readily deployed in existing distributed database systems or search engine for large-scale query usage, and much greener with no additional cost for maintaining large neural networks. Experiments on SQuAD(-open) and HotpotQA benchmarks demonstrate that Ocean-Q is able to accelerate the fastest state-of-the-art RTQA system by 4X times, with only a 3+% accuracy drop.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا