Do you want to publish a course? Click here

An FFT-based method for computing the effective crack energy of a heterogeneous material on a combinatorially consistent grid

131   0   0.0 ( 0 )
 Added by Felix Ernesti
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

We introduce an FFT-based solver for the combinatorial continuous maximum flow discretization applied to computing the minimum cut through heterogeneous microstructures. Recently, computational methods were introduced for computing the effective crack energy of periodic and random media. These were based on the continuous minimum cut-maximum flow duality of G. Strang, and made use of discretizations based on trigonometric polynomials and finite elements. For maximum flow problems on graphs, node-based discretization methods avoid metrication artifacts associated to edge-based discretizations. We discretize the minimum cut problem on heterogeneous microstructures by the combinatorial continuous maximum flow discretization introduced by Couprie et al. Furthermore, we introduce an associated FFT-based ADMM solver and provide several adaptive strategies for choosing numerical parameters. We demonstrate the salient features of the proposed approach on problems of industrial scale.



rate research

Read More

122 - Suelen Gasparin 2019
It is well known that thermal insulation is a leading strategy for reducing energy consumption associated to heating or cooling processes in buildings. Nevertheless, building insulation can generate high expenditures so that the selection of an optimum insulation thickness requires a detailed energy simulation as well as an economic analysis. In this way, the present study proposes an innovative non-uniform adaptive method to determine the optimal insulation thickness of external walls. First, the method is compared with a reference solution to properly understand the features of the method, which can provide high accuracy with less spatial nodes. Then, the adaptive method is used to simulate the transient heat conduction through the building envelope of buildings located in Brazil, where there is a large potential of energy reduction. Simulations have been efficiently carried out for different wall and roof configurations, showing that the innovative method efficiently provides a gain of 25% on the computer run time.
Capturing the interaction between objects that have an extreme difference in Young s modulus or geometrical scale is a highly challenging topic for numerical simulation. One of the fundamental questions is how to build an accurate multi-scale method with optimal computational efficiency. In this work, we develop a material-point-spheropolygon discrete element method (MPM-SDEM). Our approach fully couples the material point method (MPM) and the spheropolygon discrete element method (SDEM) through the exchange of contact force information. It combines the advantage of MPM for accurately simulating elastoplastic continuum materials and the high efficiency of DEM for calculating the Newtonian dynamics of discrete near-rigid objects. The MPM-SDEM framework is demonstrated with an explicit time integration scheme. Its accuracy and efficiency are further analysed against the analytical and experimental data. Results demonstrate this method could accurately capture the contact force and momentum exchange between materials while maintaining favourable computational stability and efficiency. Our framework exhibits great potential in the analysis of multi-scale, multi-physics phenomena
We present the sliding basis computational framework to automatically synthesize heterogeneous (graded or discrete) material fields for parts designed using constrained optimization. Our framework uses the fact that any spatially varying material field over a given domain may be parameterized as a weighted sum of the Laplacian eigenfunctions enabling efficient design space exploration with the weights as a small set of design variables. We further improve computational efficiency by using the property that the Laplacian eigenfunctions form a spectrum and may be ordered from lower to higher frequencies. This approach allows greater localized control of the material distribution as the sliding window moves through higher frequencies. The approach also reduces the number of optimization variables per iteration, thus the design optimization process speeds up independent of the domain resolution without sacrificing analysis quality. Our method is most beneficial when the gradients may not be computed easily (i.e., optimization problems coupled with external black-box analysis) thereby enabling optimization of otherwise intractable design problems. The sliding basis framework is independent of any particular physics analysis, objective and constraints, providing a versatile and powerful design optimization tool for various applications. We demonstrate our approach on graded solid rocket fuel design and multi-material topology optimization applications and evaluate its performance.
124 - Zhenxing Cheng , Hu Wang 2021
In this study, a multi-grid sampling multi-scale (MGSMS) method is proposed by coupling with finite element (FEM), extended finite element (XFEM) and molecular dynamics (MD) methods.Crack is studied comprehensively from microscopic initiations to macroscopic propagation by MGSMS method. In order to establish the coupling relationship between macroscopic and microscopic model, multi-grid FEM is used to transmit the macroscopic displacement boundary conditions to the atomic model and the multi-grid XFEM is used to feedback the microscopic crack initiations to the macroscopic model. Moreover, an image recognition based crack extracting method is proposed to extract the crack coordinate from the MD result files of efficiently and the Latin hypercube sampling method is used to reduce the computational cost of MD. Numerical results show that MGSMS method can be used to calculate micro-crack initiations and transmit it to the macro-crack model. The crack initiation and propagation simulation of plate under mode I loading is completed.
OFDM sensing is gaining increasing popularity in wideband radar applications as well as in joint communication and radar/radio sensing (JCAS). As JCAS will potentially be integrated into future mobile networks where OFDM is crucial, OFDM sensing is envisioned to be ubiquitously deployed. A fast Fourier transform (FFT) based OFDM sensing (FOS) method was proposed a decade ago and has been regarded as a de facto standard given its simplicity. In this article, we introduce an easy trick -- a pre-processing on target echo -- to further reduce the computational complexity of FOS without degrading key sensing performance. Underlying the trick is a newly disclosed feature of the target echo in OFDM sensing which, to the best of our knowledge, has not been effectively exploited yet.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا