No Arabic abstract
OFDM sensing is gaining increasing popularity in wideband radar applications as well as in joint communication and radar/radio sensing (JCAS). As JCAS will potentially be integrated into future mobile networks where OFDM is crucial, OFDM sensing is envisioned to be ubiquitously deployed. A fast Fourier transform (FFT) based OFDM sensing (FOS) method was proposed a decade ago and has been regarded as a de facto standard given its simplicity. In this article, we introduce an easy trick -- a pre-processing on target echo -- to further reduce the computational complexity of FOS without degrading key sensing performance. Underlying the trick is a newly disclosed feature of the target echo in OFDM sensing which, to the best of our knowledge, has not been effectively exploited yet.
This paper proposes a new large-scale mask-compliant spectral precoder (LS-MSP) for orthogonal frequency division multiplexing systems. In this paper, we first consider a previously proposed mask-compliant spectral precoding scheme that utilizes a generic convex optimization solver which suffers from high computational complexity, notably in large-scale systems. To mitigate the complexity of computing the LS-MSP, we propose a divide-and-conquer approach that breaks the original problem into smaller rank 1 quadratic-constraint problems and each small problem yields closed-form solution. Based on these solutions, we develop three specialized first-order low-complexity algorithms, based on 1) projection on convex sets and 2) the alternating direction method of multipliers. We also develop an algorithm that capitalizes on the closed-form solutions for the rank 1 quadratic constraints, which is referred to as 3) semi-analytical spectral precoding. Numerical results show that the proposed LS-MSP techniques outperform previously proposed techniques in terms of the computational burden while complying with the spectrum mask. The results also indicate that 3) typically needs 3 iterations to achieve similar results as 1) and 2) at the expense of a slightly increased computational complexity.
Recently, integrating the communication and sensing functions into a common network has attracted a great amount of attention. This paper considers the advanced signal processing techniques for enabling the radar to sense the environment via the communication signals. Since the technologies of orthogonal frequency division multiplexing (OFDM) and multiple-input multiple-output (MIMO) are widely used in the legacy cellular systems, this paper proposes a two-stage signal processing approach for radar sensing in an MIMO-OFDM system, where the scattered channels caused by various targets are estimated in the first stage, and the location information of the targets is then extracted from their scattered channels in the second stage. Specifically, based on the observations that radar sensing is similar to multi-path communication in the sense that different targets scatter the signal sent by the radar transmitter to the radar receiver with various delay, and that the number of scatters is limited, we show that the OFDM-based channel training approach together with the compressed sensing technique can be utilized to estimate the scattered channels efficiently in Stage I. Moreover, to tackle the challenge arising from range resolution for sensing the location of closely spaced targets, we show that the MIMO radar technique can be leveraged in Stage II such that the radar has sufficient spatial samples to even detect the targets in close proximity based on their scattered channels. Last, numerical examples are provided to show the effectiveness of our proposed sensing approach which merely relies on the existing MIMO-OFDM communication techniques.
Integrating sensing into standardized communication systems can potentially benefit many consumer applications that require both radio frequency functions. However, without an effective sensing method, such integration may not achieve the expected gains of cost and energy efficiency. Existing sensing methods, which use communication payload signals, either have limited sensing performance or suffer from high complexity. In this paper, we develop a novel and flexible sensing framework which has a complexity only dominated by a Fourier transform and also provides the flexibility in adapting for different sensing needs. We propose to segment a whole block of echo signal evenly into sub-blocks; adjacent ones are allowed to overlap. We design a virtual cyclic prefix (VCP) for each sub-block that allows us to employ two common ways of removing communication data symbols and generate two types of range-Doppler maps (RDMs) for sensing. We perform a comprehensive analysis of the signal components in the RDMs, proving that their interference-plus-noise (IN) terms are approximately Gaussian distributed. The statistical properties of the distributions are derived, which leads to the analytical comparisons between the two RDMs as well as between the prior and our sensing methods. Moreover, the impact of the lengths of sub-block, VCP and overlapping signal on sensing performance is analyzed. Criteria for designing these lengths for better sensing performance are also provided. Extensive simulations validate the superiority of the proposed sensing framework over prior methods in terms of signal-to-IN ratios in RDMs, detecting performance and flexibility.
This paper considers device-free sensing in an orthogonal frequency division multiplexing (OFDM) cellular network to enable integrated sensing and communication (ISAC). A novel two-phase sensing framework is proposed to localize the passive targets that cannot transmit/receive reference signals to/from the base stations (BSs), where the ranges of the targets are estimated based on their reflected OFDM signals to the BSs in Phase I, and the location of each target is estimated based on its values of distance to the BSs in Phase II. Specifically, in Phase I, we design a model-free range estimation approach by leveraging the OFDM channel estimation technique for determining the delay values of all the BS-target-BS paths, which does not rely on any BS-target channel model. In Phase II, we reveal that ghost targets may be falsely detected in some cases as all the targets reflect the same signals to the BSs, which thus do not know how to match each estimated range with the right target. Interestingly, we show that the above issue is not a fundamental limitation for device-free sensing: under the ideal case of perfect range estimation in Phase I, the probability for ghost targets to exist is proved to be negligible when the targets are randomly located. Moreover, under the practical case of imperfect range estimation, we propose an efficient algorithm for joint range matching and target localization. Numerical results show that our proposed framework can achieve very high accuracy in the localization of passive targets, which increases with the system bandwidth.
Large-scale antenna (LSA) has gained a lot of attention recently since it can significantly improve the performance of wireless systems. Similar to multiple-input multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) or MIMO-OFDM, LSA can be also combined with OFDM to deal with frequency selectivity in wireless channels. However, such combination suffers from substantially increased complexity proportional to the number of antennas in LSA systems. For the conventional implementation of LSA-OFDM, the number of inverse fast Fourier transforms (IFFTs) increases with the antenna number since each antenna requires an IFFT for OFDM modulation. Furthermore, zero-forcing (ZF) precoding is required in LSA systems to support more users, and the required matrix inversion leads to a huge computational burden. In this paper, we propose a low-complexity recursive convolutional precoding to address the issues above. The traditional ZF precoding can be implemented through the recursive convolutional precoding in the time domain so that only one IFFT is required for each user and the matrix inversion can be also avoided. Simulation results show that the proposed approach can achieve the same performance as that of ZF but with much lower complexity.