Do you want to publish a course? Click here

A multi-grid sampling multi-scale method for crack initiation and propagation

125   0   0.0 ( 0 )
 Added by Zhenxing Cheng
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

In this study, a multi-grid sampling multi-scale (MGSMS) method is proposed by coupling with finite element (FEM), extended finite element (XFEM) and molecular dynamics (MD) methods.Crack is studied comprehensively from microscopic initiations to macroscopic propagation by MGSMS method. In order to establish the coupling relationship between macroscopic and microscopic model, multi-grid FEM is used to transmit the macroscopic displacement boundary conditions to the atomic model and the multi-grid XFEM is used to feedback the microscopic crack initiations to the macroscopic model. Moreover, an image recognition based crack extracting method is proposed to extract the crack coordinate from the MD result files of efficiently and the Latin hypercube sampling method is used to reduce the computational cost of MD. Numerical results show that MGSMS method can be used to calculate micro-crack initiations and transmit it to the macro-crack model. The crack initiation and propagation simulation of plate under mode I loading is completed.



rate research

Read More

150 - Xiaodong Liu , Shixu Meng 2021
We consider the inverse source problems with multi-frequency sparse near field measurements. In contrast to the existing near field operator based on the integral over the space variable, a multi-frequency near field operator is introduced based on the integral over the frequency variable. A factorization of this multi-frequency near field operator is further given and analysed. Motivated by such a factorization, we introduce a multi-frequency sampling method to reconstruct the source support. Its theoretical foundation is then derived from the properties of the factorized operators and a properly chosen point spread function. Numerical examples are provided to illustrate the multi-frequency sampling method with sparse near field measurements. Finally we briefly discuss how to extend the near field case to the far field case.
177 - Zhenxing Cheng , Hu Wang 2017
This study suggests a fast computational method for crack propagation, which is based on the extended finite element method (X-FEM). It is well known that the X-FEM might be the most popular numerical method for crack propagation. However, with the increase of complexity of the given problem, the size of FE model and the number of iterative steps are increased correspondingly. To improve the efficiency of X-FEM, an efficient computational method termed decomposed updating reanalysis (DUR) method is suggested. For most of X-FEM simulation procedures, the change of each iterative step is small and it will only lead a local change of stiffness matrix. Therefore, the DUR method is proposed to predict the modified response by only calculating the changed part of equilibrium equations. Compared with other fast computational methods, the distinctive characteristic of the proposed method is to update the modified stiffness matrix with a local updating strategy, which only the changed part of stiffness matrix needs to be updated. To verify the performance of the DUR method, several typical numerical examples have been analyzed and the results demonstrate that this method is a highly efficient method with high accuracy.
A representative volume element (RVE) based multi-scale method is proposed to investigate the mechanism of fatigue crack propagation by the molecular dynamics (MD) and the extended finite element methods(XFEM) in this study. An atomic model of carbon steel plate is built to study the behavior of fatigue crack at the micro scale by MD method. Then the RVE model for fatigue crack propagation should be built by fitting the data which was obtained from the MD result with the Paris law model. Moreover, the effect of micro-structural defects including interstitial atoms, vacancies have also been considered in this study. The results indicate that the micro-structural defects can deeply influence the values of Paris law constants and the life of the specimen can be evaluated by the proposed method.
Mineral precipitation and dissolution processes in a porous medium can alter the structure of the medium at the scale of pores. Such changes make numerical simulations a challenging task as the geometry of the pores changes in time in an apriori unknown manner. To deal with such aspects, we here adopt a two-scale phase-field model, and propose a robust scheme for the numerical approximation of the solution. The scheme takes into account both the scale separation in the model, as well as the non-linear character of the model. After proving the convergence of the scheme, an adaptive two-scale strategy is incorporated, which improves the efficiency of the simulations. Numerical tests are presented, showing the efficiency and accuracy of the scheme in the presence of anisotropies and heterogeneities.
In this paper, we consider the development of efficient numerical methods for linear transport equations with random parameters and under the diffusive scaling. We extend to the present case the bi-fidelity stochastic collocation method introduced in [33,50,51]. For the high-fidelity transport model, the asymptotic-preserving scheme [29] is used for each stochastic sample. We employ the simple two-velocity Goldstein-Taylor equation as low-fidelity model to accelerate the convergence of the uncertainty quantification process. The choice is motivated by the fact that both models, high fidelity and low fidelity, share the same diffusion limit. Speed-up is achieved by proper selection of the collocation points and relative approximation of the high-fidelity solution. Extensive numerical experiments are conducted to show the efficiency and accuracy of the proposed method, even in non diffusive regimes, with empirical error bound estimations as studied in [16].
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا