No Arabic abstract
We propose a data-driven scene flow estimation algorithm exploiting the observation that many 3D scenes can be explained by a collection of agents moving as rigid bodies. At the core of our method lies a deep architecture able to reason at the textbf{object-level} by considering 3D scene flow in conjunction with other 3D tasks. This object level abstraction, enables us to relax the requirement for dense scene flow supervision with simpler binary background segmentation mask and ego-motion annotations. Our mild supervision requirements make our method well suited for recently released massive data collections for autonomous driving, which do not contain dense scene flow annotations. As output, our model provides low-level cues like pointwise flow and higher-level cues such as holistic scene understanding at the level of rigid objects. We further propose a test-time optimization refining the predicted rigid scene flow. We showcase the effectiveness and generalization capacity of our method on four different autonomous driving datasets. We release our source code and pre-trained models under url{github.com/zgojcic/Rigid3DSceneFlow}.
Phrase grounding, the problem of associating image regions to caption words, is a crucial component of vision-language tasks. We show that phrase grounding can be learned by optimizing word-region attention to maximize a lower bound on mutual information between images and caption words. Given pairs of images and captions, we maximize compatibility of the attention-weighted regions and the words in the corresponding caption, compared to non-corresponding pairs of images and captions. A key idea is to construct effective negative captions for learning through language model guided word substitutions. Training with our negatives yields a $sim10%$ absolute gain in accuracy over randomly-sampled negatives from the training data. Our weakly supervised phrase grounding model trained on COCO-Captions shows a healthy gain of $5.7%$ to achieve $76.7%$ accuracy on Flickr30K Entities benchmark.
Scene flow estimation is the task to predict the point-wise 3D displacement vector between two consecutive frames of point clouds, which has important application in fields such as service robots and autonomous driving. Although many previous works have explored greatly on scene flow estimation based on point clouds, we point out two problems that have not been noticed or well solved before: 1) Points of adjacent frames in repetitive patterns may be wrongly associated due to similar spatial structure in their neighbourhoods; 2) Scene flow between adjacent frames of point clouds with long-distance movement may be inaccurately estimated. To solve the first problem, we propose a novel context-aware set conv layer to exploit contextual structure information of Euclidean space and learn soft aggregation weights for local point features. Our design is inspired by human perception of contextual structure information during scene understanding. We incorporate the context-aware set conv layer in a context-aware point feature pyramid module of 3D point clouds for scene flow estimation. For the second problem, we propose an explicit residual flow learning structure in the residual flow refinement layer to cope with long-distance movement. The experiments and ablation study on FlyingThings3D and KITTI scene flow datasets demonstrate the effectiveness of each proposed component and that we solve problem of ambiguous inter-frame association and long-distance movement estimation. Quantitative results on both FlyingThings3D and KITTI scene flow datasets show that our method achieves state-of-the-art performance, surpassing all other previous works to the best of our knowledge by at least 25%.
We propose to learn a 3D pose estimator by distilling knowledge from Non-Rigid Structure from Motion (NRSfM). Our method uses solely 2D landmark annotations. No 3D data, multi-view/temporal footage, or object specific prior is required. This alleviates the data bottleneck, which is one of the major concern for supervised methods. The challenge for using NRSfM as teacher is that they often make poor depth reconstruction when the 2D projections have strong ambiguity. Directly using those wrong depth as hard target would negatively impact the student. Instead, we propose a novel loss that ties depth prediction to the cost function used in NRSfM. This gives the student pose estimator freedom to reduce depth error by associating with image features. Validated on H3.6M dataset, our learned 3D pose estimation network achieves more accurate reconstruction compared to NRSfM methods. It also outperforms other weakly supervised methods, in spite of using significantly less supervision.
Accurate and efficient catheter segmentation in 3D ultrasound (US) is essential for cardiac intervention. Currently, the state-of-the-art segmentation algorithms are based on convolutional neural networks (CNNs), which achieved remarkable performances in a standard Cartesian volumetric data. Nevertheless, these approaches suffer the challenges of low efficiency and GPU unfriendly image size. Therefore, such difficulties and expensive hardware requirements become a bottleneck to build accurate and efficient segmentation models for real clinical application. In this paper, we propose a novel Frustum ultrasound based catheter segmentation method. Specifically, Frustum ultrasound is a polar coordinate based image, which includes same information of standard Cartesian image but has much smaller size, which overcomes the bottleneck of efficiency than conventional Cartesian images. Nevertheless, the irregular and deformed Frustum images lead to more efforts for accurate voxel-level annotation. To address this limitation, a weakly supervised learning framework is proposed, which only needs 3D bounding box annotations overlaying the region-of-interest to training the CNNs. Although the bounding box annotation includes noise and inaccurate annotation to mislead to model, it is addressed by the proposed pseudo label generated scheme. The labels of training voxels are generated by incorporating class activation maps with line filtering, which is iteratively updated during the training. Our experimental results show the proposed method achieved the state-of-the-art performance with an efficiency of 0.25 second per volume. More crucially, the Frustum image segmentation provides a much faster and cheaper solution for segmentation in 3D US image, which meet the demands of clinical applications.
This paper presents a novel semantic scene change detection scheme with only weak supervision. A straightforward approach for this task is to train a semantic change detection network directly from a large-scale dataset in an end-to-end manner. However, a specific dataset for this task, which is usually labor-intensive and time-consuming, becomes indispensable. To avoid this problem, we propose to train this kind of network from existing datasets by dividing this task into change detection and semantic extraction. On the other hand, the difference in camera viewpoints, for example, images of the same scene captured from a vehicle-mounted camera at different time points, usually brings a challenge to the change detection task. To address this challenge, we propose a new siamese network structure with the introduction of correlation layer. In addition, we create a publicly available dataset for semantic change detection to evaluate the proposed method. The experimental results verified both the robustness to viewpoint difference in change detection task and the effectiveness for semantic change detection of the proposed networks. Our code and dataset are available at https://github.com/xdspacelab/sscdnet.