No Arabic abstract
Virtual power plant (VPP) provides a flexible solution to distributed energy resources integration by aggregating renewable generation units, conventional power plants, energy storages, and flexible demands. This paper proposes a novel model for determining the optimal offering strategy in the day-ahead energy-reserve market and the optimal self-scheduling plan. It considers exogenous uncertainties (or called decision-independent uncertainties, DIUs) associated with market clearing prices and available wind power generation, as well as the endogenous uncertainties (or called decision-dependent uncertainties, DDUs) pertaining to real-time reserve deployment requests. A tractable solution method based on strong duality theory, McCormick relaxation, and the Benders decomposition to solve the proposed stochastic adaptive robust optimization with DDUs formulation is developed. Simulation results demonstrate the applicability of the proposed approach.
This paper proposes a robust transient stability constrained optimal power flow problem that addresses renewable uncertainties by the coordination of generation re-dispatch and power flow router (PFR) tuning.PFR refers to a general type of network-side controller that enlarges the feasible region of the OPF problem. The coordination between network-side and generator-side control in the proposed model is more general than the traditional methods which focus on generation dispatch only. An offline-online solution framework is developed to solve the problem efficiently. Under this framework the original problem is significantly simplified, so that we only need to solve a low-dimensional deterministic problem at the online stage to achieve real-time implementation with a high robustness level. The proposed method is verified on the modified New England 39-bus system. Numerical results demonstrate that the proposed method is efficient and shows good performance on economy and robustness.
The synchronization of power generators is an important condition for the proper functioning of a power system, in which the fluctuations in frequency and the phase angle differences between the generators are sufficiently small when subjected to stochastic disturbances. Serious fluctuations can prompt desynchronization, which may lead to widespread power outages. Here, we derive explicit formulas that relate the fluctuations to the disturbances, and we reveal the role of system parameters. In particular, the relationship between synchronization stability and network theory is established, which characterizes the impact of the network topology on the fluctuations. Our analysis provides guidelines for the system parameter assignments and the design of the network topology to suppress the fluctuations and further enhance the synchronization stability of future smart grids integrated with a large amount of renewable energy.
As the concern about climate change and energy shortage grow stronger, the incorporation of renewable energy in the power system in the future is foreseeable. In a hybrid power system with a large penetration of PV generation, PV panel is regarded as a negative load in the power system. With the accurate prediction of PV output power, load frequency control could be done by controlling the thermal and hydro power plant in the system. Combined Cycle Power Plant is widely used because of its great advantages of fast response and high efficiency. This article is focusing on the mathematical modelling and analyzing of Combined Cycle Power Plant for the frequency control purpose in a model of hybrid system with large renewable energy generation.
Residential loads, especially heating, ventilation, and air conditioners (HVACs) and electric vehicles (EVs) have great potentials to provide demand flexibility which is an attribute of Grid-interactive Efficient Buildings (GEB). Under this new paradigm, first, EV and HVAC aggregator models are developed in this paper to represent the fleet of GEBs, in which the aggregated parameters are obtained based on a new approach of data generation and least-squares parameter estimation (DG-LSPE), which can deal with heterogenous HVACs. Then, a tri-level bidding and dispatching framework is established based on competitive distribution operation with distribution locational marginal price (DLMP). The first two levels form a bilevel model to optimize the aggregators payment and to represent the interdependency between load aggregators and the distribution system operator (DSO) using DLMP, while the third level is to dispatch the optimal load aggregation to all residents by the proposed priority list-based demand dispatching algorithm. Finally, case studies on a modified IEEE 33-Bus system illustrate three main technical reasons for payment reduction due to demand flexibility: load shift, DLMP step changes, and power losses. They can be used as general guidelines for better decision-making for future planning and operation of demand response programs.
Many illnesses are associated with an alteration of the immune system homeostasis due to any combination of factors, including exogenous bacterial insult, endogenous breakdown (e.g., development of a disease that results in immuno suppression), or an exogenous hit like surgery that simultaneously alters immune responsiveness and provides access to bacteria, or genetic disorder. We conjecture that, as a consequence of the co-evolution of the immune system of individuals with the ecology of pathogens, the homeostasis of the immune system requires the influx of pathogens. This allows the immune system to keep the ever present pathogens under control and to react and adjust fast to bursts of infections. We construct the simplest and most general system of rate equations which describes the dynamics of five compartments: healthy cells, altered cells, adaptive and innate immune cells, and pathogens. We study four regimes obtained with or without auto-immune disorder and with or without spontaneous proliferation of infected cells. Over all regimes, we find that seven different states are naturally described by the model: (i) strong healthy immune system, (ii) healthy organism with evanescent immune cells, (iii) chronic infections, (iv) strong infections, (v) cancer, (vi) critically ill state and (vii) death. The analysis of stability conditions demonstrates that these seven states depend on the balance between the robustness of the immune system and the influx of pathogens.