No Arabic abstract
Residential loads, especially heating, ventilation, and air conditioners (HVACs) and electric vehicles (EVs) have great potentials to provide demand flexibility which is an attribute of Grid-interactive Efficient Buildings (GEB). Under this new paradigm, first, EV and HVAC aggregator models are developed in this paper to represent the fleet of GEBs, in which the aggregated parameters are obtained based on a new approach of data generation and least-squares parameter estimation (DG-LSPE), which can deal with heterogenous HVACs. Then, a tri-level bidding and dispatching framework is established based on competitive distribution operation with distribution locational marginal price (DLMP). The first two levels form a bilevel model to optimize the aggregators payment and to represent the interdependency between load aggregators and the distribution system operator (DSO) using DLMP, while the third level is to dispatch the optimal load aggregation to all residents by the proposed priority list-based demand dispatching algorithm. Finally, case studies on a modified IEEE 33-Bus system illustrate three main technical reasons for payment reduction due to demand flexibility: load shift, DLMP step changes, and power losses. They can be used as general guidelines for better decision-making for future planning and operation of demand response programs.
Demand flexibility is increasingly important for power grids. Careful coordination of thermostatically controlled loads (TCLs) can modulate energy demand, decrease operating costs, and increase grid resiliency. We propose a novel distributed control framework for the Coordination Of HeterOgeneous Residential Thermostatically controlled loads (COHORT). COHORT is a practical, scalable, and versatile solution that coordinates a population of TCLs to jointly optimize a grid-level objective, while satisfying each TCLs end-use requirements and operational constraints. To achieve that, we decompose the grid-scale problem into subproblems and coordinate their solutions to find the global optimum using the alternating direction method of multipliers (ADMM). The TCLs local problems are distributed to and computed in parallel at each TCL, making COHORT highly scalable and privacy-preserving. While each TCL poses combinatorial and non-convex constraints, we characterize these constraints as a convex set through relaxation, thereby making COHORT computationally viable over long planning horizons. After coordination, each TCL is responsible for its own control and tracks the agreed-upon power trajectory with its preferred strategy. In this work, we translate continuous power back to discrete on/off actuation, using pulse width modulation. COHORT is generalizable to a wide range of grid objectives, which we demonstrate through three distinct use cases: generation following, minimizing ramping, and peak load curtailment. In a notable experiment, we validated our approach through a hardware-in-the-loop simulation, including a real-world air conditioner (AC) controlled via a smart thermostat, and simulated instances of ACs modeled after real-world data traces. During the 15-day experimental period, COHORT reduced daily peak loads by an average of 12.5% and maintained comfortable temperatures.
We study operations of a battery energy storage system under a baseline-based demand response (DR) program with an uncertain schedule of DR events. Baseline-based DR programs may provide undesired incentives to inflate baseline consumption in non-event days, in order to increase apparent DR reduction in event days and secure higher DR payments. Our goal is to identify and quantify such incentives. To understand customer decisions, we formulate the problem of determining hourly battery charging and discharge schedules to minimize expected net costs, defined as energy purchase costs minus energy export rebates and DR payments, over a sufficiently long time horizon (e.g., a year). The complexity of this stochastic optimization problem grows exponentially with the time horizon considered. To obtain computationally tractable solutions, we propose using multistage model predictive control with scenario sampling. Numerical results indicate that our solutions are near optimal (e.g., within 3% from the optimum in the test cases). Finally, we apply our solutions to study an example residential customer with solar photovoltaic and battery systems participating in a typical existing baseline-based DR program. Results reveal that over 66% of the average apparent load reduction during DR events could result from inflation of baseline consumption during non-event days.
As a typical approach of demand response (DR), direct load control (DLC) enables load service entity (LSE) to adjust electricity usage of home-end customers for peak shaving during DLC event. Households are connected in low voltage distribution networks, which is three phase unbalanced. However, existing works have not considered the network constraints and operational constraints of three phase unbalanced distribution systems, thus may ending up with decisions that deviate from reality or even infeasible in real world. This paper proposes residential DLC considering associated constraints of three phase unbalanced distribution networks. Numerical tests on a modified IEEE benchmark system demonstrate the effectiveness of the method.
The control and managing of power demand and supply become very crucial because of penetration of renewables in the electricity networks and energy demand increase in residential and commercial sectors. In this paper, a new approach is presented to bridge the gap between Demand-Side Management (DSM) and microgrid portfolio, sizing and placement optimization. Although DSM helps energy consumers to take advantage of recent developments in utilization of Distributed Energy Resources (DERs) especially microgrids, a huge need of connecting DSM results to microgrid optimization is being felt. Consequently, a novel model that integrates the DSM techniques and microgrid modules in a two-layer configuration is proposed. In the first layer, DSM is employed to minimize the electricity demand (e.g. heating and cooling loads) based on zone temperature set-point. Using the optimal load profile obtained from the first layer, all investment and operation costs of a microgrid are then optimized in the second layer. The presented model is based on the existing optimization platform developed by RU-LESS (Rutgers University, Laboratory for Energy Smart Systems) team. As a demonstration, the developed model has been used to study the impact of smart HVAC control on microgrid compared to traditional HVAC control. The results show a noticeable reduction in total annual energy consumption and annual cost of microgrid.
This paper introduces network flexibility into the chance constrained economic dispatch (CCED). In the proposed model, both power generations and line susceptances become variables to minimize the expected generation cost and guarantee a low probability of constraint violation in terms of generations and line flows under renewable uncertainties. We figure out the mechanism of network flexibility against uncertainties from the analytical form of CCED. On one hand, renewable uncertainties shrink the usable line capacities in the line flow constraints and aggravate transmission congestion. On the other hand, network flexibility significantly mitigates congestion by regulating the base-case line flows and reducing the line capacity shrinkage caused by uncertainties. Further, we propose an alternate iteration solver for this problem, which is efficient. With duality theory, we propose two convex subproblems with respect to generation-related variables and network-related variables, respectively. A satisfactory solution can be obtained by alternately solving these two subproblems. The case studies on the IEEE 14-bus system and IEEE 118-bus system suggest that network flexibility contributes much to operational economy under renewable uncertainties.