No Arabic abstract
Precise indoor localization is one of the key requirements for fifth Generation (5G) and beyond, concerning various wireless communication systems, whose applications span different vertical sectors. Although many highly accurate methods based on signal fingerprints have been lately proposed for localization, their vast majority faces the problem of degrading performance when deployed in indoor systems, where the propagation environment changes rapidly. In order to address this issue, the crowdsourcing approach has been adopted, according to which the fingerprints are frequently updated in the respective database via user reporting. However, the late crowdsourcing techniques require precise indoor floor plans and fail to provide satisfactory accuracy. In this paper, we propose a low-complexity self-calibrating indoor crowdsourcing localization system that combines historical with frequently updated fingerprints for high precision user positioning. We present a multi-kernel transfer learning approach which exploits the inner relationship between the original and updated channel measurements. Our indoor laboratory experimental results with the proposed approach and using Nexus 5 smartphones at 2.4GHz with 20MHz bandwidth have shown the feasibility of about one meter level accuracy with a reasonable fingerprint update overhead.
Indoor localization has drawn much attention owing to its potential for supporting location based services. Among various indoor localization techniques, the received signal strength (RSS) based technique is widely researched. However, in conventional RSS based systems where the radio environment is unconfigurable, adjacent locations may have similar RSS values, which limits the localization precision. In this paper, we present MetaRadar, which explores reconfigurable radio reflection with a surface/plane made of metamaterial units for multi-user localization. By changing the reflectivity of metamaterial, MetaRadar modifies the radio channels at different locations, and improves localization accuracy by making RSS values at adjacent locations have significant differences. However, in MetaRadar, it is challenging to build radio maps for all the radio environments generated by metamaterial units and select suitable maps from all the possible maps to realize a high accuracy localization. To tackle this challenge, we propose a compressive construction technique which can predict all the possible radio maps, and propose a configuration optimization algorithm to select favorable metamaterial reflectivities and the corresponding radio maps. The experimental results show a significant improvement from a decimeter-level localization error in the traditional RSS-based systems to a centimeter-level one in MetaRadar.
With the rising demand for indoor localization, high precision technique-based fingerprints became increasingly important nowadays. The newest advanced localization system makes effort to improve localization accuracy in the time or frequency domain, for example, the UWB localization technique can achieve centimeter-level accuracy but have a high cost. Therefore, we present a spatial domain extension-based scheme with low cost and verify the effectiveness of antennas extension in localization accuracy. In this paper, we achieve sub-meter level localization accuracy using a single AP by extending three radio links of the modified laptops to more antennas. Moreover, the experimental results show that the localization performance is superior as the number of antennas increases with the help of spatial domain extension and angular domain assisted.
We derive new expressions for the connection probability and the average ergodic capacity to evaluate the performance achieved by multi-connectivity (MC) in an indoor ultra-wideband terahertz (THz) communication system. In this system, the user is affected by both self-blockage and dynamic human blockers. We first build up a three-dimensional propagation channel in this system to characterize the impact of molecular absorption loss and the shrinking usable bandwidth nature of the ultra-wideband THz channel. We then carry out new performance analysis for two MC strategies: 1) Closest line-of-sight (LOS) access point (AP) MC (C-MC), and 2) Reactive MC (R- MC). With numerical results, we validate our analysis and show the considerable improvement achieved by both MC strategies in the connection probability. We further show that the C-MC and R-MC strategies provide significant and marginal capacity gain relative to the single connectivity strategy, respectively, and increasing the number of the users associated APs imposes completely different affects on the capacity gain achieved by the C-MC and R-MC strategies. Additionally, we clarify that our analysis allows us to determine the optimal density of APs in order to maximize the capacity gain.
With the rapid development of indoor location-based services (LBSs), the demand for accurate localization keeps growing as well. To meet this demand, we propose an indoor localization algorithm based on graph convolutional network (GCN). We first model access points (APs) and the relationships between them as a graph, and utilize received signal strength indication (RSSI) to make up fingerprints. Then the graph and the fingerprint will be put into GCN for feature extraction, and get classification by multilayer perceptron (MLP).In the end, experiments are performed under a 2D scenario and 3D scenario with floor prediction. In the 2D scenario, the mean distance error of GCN-based method is 11m, which improves by 7m and 13m compare with DNN-based and CNN-based schemes respectively. In the 3D scenario, the accuracy of predicting buildings and floors are up to 99.73% and 93.43% respectively. Moreover, in the case of predicting floors and buildings correctly, the mean distance error is 13m, which outperforms DNN-based and CNN-based schemes, whose mean distance errors are 34m and 26m respectively.
Indoor intrusion detection technology has been widely utilized in network security monitoring, smart city, entertainment games, and other fields. Most existing indoor intrusion detection methods directly exploit the Received Signal Strength (RSS) data collected by Monitor Points (MPs) and do not consider the instability of WLAN signals in the complex indoor environments. In response to this urgent problem, this paper proposes a novel WLAN indoor intrusion detection method based on deep signal feature fusion and Minimized Multiple Kernel Maximum Mean Discrepancy (Minimized-MKMMD). Firstly, the multi-branch deep convolutional neural network is used to conduct the dimensionality reduction and feature fusion of the RSS data, and the tags are obtained according to the features of the offline and online RSS fusion features that are corresponding to the silence and intrusion states, and then based on this, the source domain and target domain are constructed respectively. Secondly, the optimal transfer matrix is constructed by minimizing MKMMD. Thirdly, the transferred RSS data in the source domain is utilized for training the classifiers that are applying in getting the classification of the RSS fusion features in the target domain in the same shared subspace. Finally, the intrusion detection of the target environment is realized by iteratively updating the process above until the algorithm converges. The experimental results show that the proposed method can effectively improve the accuracy and robustness of the intrusion detection system.