No Arabic abstract
Crowdsourcing can collect many diverse ideas by prompting ideators individually, but this can generate redundant ideas. Prior methods reduce redundancy by presenting peers ideas or peer-proposed prompts, but these require much human coordination. We introduce Directed Diversity, an automatic prompt selection approach that leverages language model embedding distances to maximize diversity. Ideators can be directed towards diverse prompts and away from prior ideas, thus improving their collective creativity. Since there are diverse metrics of diversity, we present a Diversity Prompting Evaluation Framework consolidating metrics from several research disciplines to analyze along the ideation chain - prompt selection, prompt creativity, prompt-ideation mediation, and ideation creativity. Using this framework, we evaluated Directed Diversity in a series of a simulation study and four user studies for the use case of crowdsourcing motivational messages to encourage physical activity. We show that automated diverse prompting can variously improve collective creativity across many nuanced metrics of diversity.
We present a three-week within-subject field study comparing three mobile language learning (MLL) applications with varying levels of integration into everyday smartphone interactions: We designed a novel (1) UnlockApp that presents a vocabulary task with each authentication event, nudging users towards short frequent learning sessions. We compare it with a (2) NotificationApp that displays vocabulary tasks in a push notification in the status bar, which is always visible but learning needs to be user-initiated, and a (3) StandardApp that requires users to start in-app learning actively. Our study is the first to directly compare these embedding concepts for MLL, showing that integrating vocabulary learning into everyday smartphone interactions via UnlockApp and NotificationApp increases the number of answers. However, users show individual subjective preferences. Based on our results, we discuss the trade-off between higher content exposure and disturbance, and the related challenges and opportunities of embedding learning seamlessly into everyday mobile interactions.
The latent space modeled by generative adversarial networks (GANs) represents a large possibility space. By interpolating categories generated by GANs, it is possible to create novel hybrid images. We present Meet the Ganimals, a casual creator built on interpolations of BigGAN that can generate novel, hybrid animals called ganimals by efficiently searching this possibility space. Like traditional casual creators, the system supports a simple creative flow that encourages rapid exploration of the possibility space. Users can discover new ganimals, create their own, and share their reactions to aesthetic, emotional, and morphological characteristics of the ganimals. As users provide input to the system, the system adapts and changes the distribution of categories upon which ganimals are generated. As one of the first GAN-based casual creators, Meet the Ganimals is an example how casual creators can leverage human curation and citizen science to discover novel artifacts within a large possibility space.
State-of-the-art methods for counting people in crowded scenes rely on deep networks to estimate crowd density. While effective, these data-driven approaches rely on large amount of data annotation to achieve good performance, which stops these models from being deployed in emergencies during which data annotation is either too costly or cannot be obtained fast enough. One popular solution is to use synthetic data for training. Unfortunately, due to domain shift, the resulting models generalize poorly on real imagery. We remedy this shortcoming by training with both synthetic images, along with their associated labels, and unlabeled real images. To this end, we force our network to learn perspective-aware features by training it to recognize upside-down real images from regular ones and incorporate into it the ability to predict its own uncertainty so that it can generate useful pseudo labels for fine-tuning purposes. This yields an algorithm that consistently outperforms state-of-the-art cross-domain crowd counting ones without any extra computation at inference time.
In this paper we describe how crowd and machine classifier can be efficiently combined to screen items that satisfy a set of predicates. We show that this is a recurring problem in many domains, present machine-human (hybrid) algorithms that screen items efficiently and estimate the gain over human-only or machine-only screening in terms of performance and cost.
Crowd algorithms often assume workers are inexperienced and thus fail to adapt as workers in the crowd learn a task. These assumptions fundamentally limit the types of tasks that systems based on such algorithms can handle. This paper explores how the crowd learns and remembers over time in the context of human computation, and how more realistic assumptions of worker experience may be used when designing new systems. We first demonstrate that the crowd can recall information over time and discuss possible implications of crowd memory in the design of crowd algorithms. We then explore crowd learning during a continuous control task. Recent systems are able to disguise dynamic groups of workers as crowd agents to support continuous tasks, but have not yet considered how such agents are able to learn over time. We show, using a real-time gaming setting, that crowd agents can learn over time, and `remember by passing strategies from one generation of workers to the next, despite high turnover rates in the workers comprising them. We conclude with a discussion of future research directions for crowd memory and learning.