Do you want to publish a course? Click here

Comparing Concepts for Embedding Second-Language Vocabulary Acquisition into Everyday Smartphone Interactions

281   0   0.0 ( 0 )
 Added by Daniel Buschek
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

We present a three-week within-subject field study comparing three mobile language learning (MLL) applications with varying levels of integration into everyday smartphone interactions: We designed a novel (1) UnlockApp that presents a vocabulary task with each authentication event, nudging users towards short frequent learning sessions. We compare it with a (2) NotificationApp that displays vocabulary tasks in a push notification in the status bar, which is always visible but learning needs to be user-initiated, and a (3) StandardApp that requires users to start in-app learning actively. Our study is the first to directly compare these embedding concepts for MLL, showing that integrating vocabulary learning into everyday smartphone interactions via UnlockApp and NotificationApp increases the number of answers. However, users show individual subjective preferences. Based on our results, we discuss the trade-off between higher content exposure and disturbance, and the related challenges and opportunities of embedding learning seamlessly into everyday mobile interactions.



rate research

Read More

The learning of a new language remains to this date a cognitive task that requires considerable diligence and willpower, recent advances and tools notwithstanding. In this paper, we propose Broccoli, a new paradigm aimed at reducing the required effort by seamlessly embedding vocabulary learning into users everyday information diets. This is achieved by inconspicuously switching chosen words encountered by the user for their translation in the target language. Thus, by seeing words in context, the user can assimilate new vocabulary without much conscious effort. We validate our approach in a careful user study, finding that the efficacy of the lightweight Broccoli approach is competitive with traditional, memorization-based vocabulary learning. The low cognitive overhead is manifested in a pronounced decrease in learners usage of mnemonic learning strategies, as compared to traditional learning. Finally, we establish that language patterns in typical information diets are compatible with spaced-repetition strategies, thus enabling an efficient use of the Broccoli paradigm. Overall, our work establishes the feasibility of a novel and powerful install-and-forget approach for embedded language acquisition.
Crowdsourcing can collect many diverse ideas by prompting ideators individually, but this can generate redundant ideas. Prior methods reduce redundancy by presenting peers ideas or peer-proposed prompts, but these require much human coordination. We introduce Directed Diversity, an automatic prompt selection approach that leverages language model embedding distances to maximize diversity. Ideators can be directed towards diverse prompts and away from prior ideas, thus improving their collective creativity. Since there are diverse metrics of diversity, we present a Diversity Prompting Evaluation Framework consolidating metrics from several research disciplines to analyze along the ideation chain - prompt selection, prompt creativity, prompt-ideation mediation, and ideation creativity. Using this framework, we evaluated Directed Diversity in a series of a simulation study and four user studies for the use case of crowdsourcing motivational messages to encourage physical activity. We show that automated diverse prompting can variously improve collective creativity across many nuanced metrics of diversity.
Bipolar disorder (BPD) is a chronic mental illness characterized by extreme mood and energy changes from mania to depression. These changes drive behaviors that often lead to devastating personal or social consequences. BPD is managed clinically with regular interactions with care providers, who assess mood, energy levels, and the form and content of speech. Recent work has proposed smartphones for monitoring mood using speech. However, these works do not predict when to intervene. Predicting when to intervene is challenging because there is not a single measure that is relevant for every person: different individuals may have different levels of symptom severity considered typical. Additionally, this typical mood, or baseline, may change over time, making a single symptom threshold insufficient. This work presents an innovative approach that expands clinical mood monitoring to predict when interventions are necessary using an anomaly detection framework, which we call Temporal Normalization. We first validate the model using a dataset annotated for clinical interventions and then incorporate this method in a deep learning framework to predict mood anomalies from natural, unstructured, telephone speech data. The combination of these approaches provides a framework to enable real-world speech-focused mood monitoring.
Limited linguistic coverage for Intelligent Personal Assistants (IPAs) means that many interact in a non-native language. Yet we know little about how IPAs currently support or hinder these users. Through native (L1) and non-native (L2) English speakers interacting with Google Assistant on a smartphone and smart speaker, we aim to understand this more deeply. Interviews revealed that L2 speakers prioritised utterance planning around perceived linguistic limitations, as opposed to L1 speakers prioritising succinctness because of system limitations. L2 speakers see IPAs as insensitive to linguistic needs resulting in failed interaction. L2 speakers clearly preferred using smartphones, as visual feedback supported diagnoses of communication breakdowns whilst allowing time to process query results. Conversely, L1 speakers preferred smart speakers, with audio feedback being seen as sufficient. We discuss the need to tailor the IPA experience for L2 users, emphasising visual feedback whilst reducing the burden of language production.
Programming language design requires making many usability-related design decisions. However, existing HCI methods can be impractical to apply to programming languages: they have high iteration costs, programmers require significant learning time, and user performance has high variance. To address these problems, we adapted both formative and summative HCI methods to make them more suitable for programming language design. We integrated these methods into a new process, PLIERS, for designing programming languages in a user-centered way. We evaluated PLIERS by using it to design two new programming languages. Glacier extends Java to enable programmers to express immutability properties effectively and easily. Obsidian is a language for blockchains that includes verification of critical safety properties. Summative usability studies showed that programmers were able to program effectively in both languages after short training periods.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا